Ontology-based Policy Translation

Cataldo Basile, Antonio Lioy, Salvatore Scozzi, Marco Vallini

Politecnico di Torino
Dip. di Automatica ed Informatica
Torino, Italy
{cataldo.basile, antonio.lioy, marco.vallini } @polito.it, salvatore.scozzi @ gmail.com

Abstract. Quite often attacks are enabled by mis-configurations generated by
human errors. Policy-based network management has been proposed to cope with
this problem: goals are expressed as high-level rules that are then translated into
low-level configurations for network devices. While the concept is clear, there
is a lack of tools supporting this strategy. We propose an ontology-based policy
translation approach that mimics the behaviour of expert administrators, without
their mistakes. We use ontologies to represent the domain knowledge and then
perform reasonings (based on best practice rules) to create the configurations
for network-level security controls (e.g., firewall and secure channels). If some
information is missing from the ontology, the administrator is guided to provide
the missing data. The configurations generated by our approach are represented in
a vendor-independent format and therefore can be used with several real devices.

1 Introduction

One major weakness in today security landscape is still an old one: the human factor.
Already back in the year 2000, the “Roadmap for defeating Denial of Service attacks”!
highlighted the general scarce technical talent and decreased competence of system ad-
ministrators. Unfortunately, this scenario has not significantly improved, as confirmed
by recent reports [1]. It is therefore important to support security managers with auto-
matic tools to minimize human errors.

Presently, policy-based network management (PBNM) [2,3] seems the best ap-
proach to cope with system administration because it separates the goals (i.e., the pol-
icy) from the mechanisms to achieve them (i.e., the security controls). Policies are ex-
pressed as high-level security statements, derived from business goals or best-practice
rules. However actual security controls are mostly placed at network level. Firewall
and virtual private network (VPN) are ubiquitous in security architectures because they
have excellent performance (compared to application-level controls) and do not require
changes to business applications. Evidence says that, as the network grows bigger, the
configuration of network-level controls becomes exponentially complex. We have there-
fore a mismatch: policies are expressed at high level while controls are at network level.
Bridging this gap is the task of policy translation that consists in transforming a policy
from the level of abstraction A to the (lower) level B. This procedure is repeated until

! http://www.sans.org/dosstep/roadmap.php

Authors' version of the paper published in the proceedings of

CISIS-2009 - Int. Workshop on Computational Intelligence in Security for Information Systems

Burgos (Spain), September 23-26, 2009, pp. 117-126, DOI: 10.1007/978-3-642-04091-7 15

The final publication is available at www.springerlink.com in Vol.63 of the series Advances in Intelligent and Soft Computing

the policy is expressed in a way that can be used to configure a specific control (e.g.,
IP-level filters for a firewall).

Quite often translation from high-level policies to actual controls is manually per-
formed by security administrators but this is still time-consuming and error prone: if
policy translation is not automated, PBNM is simply a problem shift, not a solution.
Our approach, called Ontology-Based Policy Translator (OPoT), handles this problem
using ontology-based reasoning to refine policies into configuration for the actual con-
trols. In particular, OPoT mimics skilled administrators in collecting all the needed
information and applying best practice for security configuration. Ontologies are very
effective in capturing, defining, sharing, and reusing the knowledge about a specific do-
main. In particular, they are good at representing relationships between entities and at
verifying the correctness of knowledge [4]. Therefore we use an ontology to represent
the domain of interest — computer networks — from the topological and functional point
of view, and the environmental data necessary to correctly configure them.

OPoT exploits ontology-based reasoning to understand the information necessary
for policy translation and to enrich the knowledge base in order to fill the gap between
abstraction levels. In other words, automatic reasoning is used to enlarge the domain of
knowledge of the ontology without the need to involve human administrators. Neverthe-
less, the reasoning alone is unable to fully translate a policy because some information
cannot be guessed or derived (e.g., the users’ roles). To this purpose, OPoT guides the
administrator in providing the data necessary to complete the configurations. OPoT also
reports about possible anomalies when it discovers that best practice is not followed.

The advantages of this approach are manifold. First, it addresses policy translation
in a way that reduces the impact of administrators’ mistakes in the configuration work-
flow: we just assume that the provided information (e.g., organization charts, tasks)
is correct. Second, it strongly decreases the effort and the time to have a set of cor-
rect configurations (from days to minutes). Finally, it quickly adapts to changes in the
methodologies. The proposed approach can still be improved in several aspects, but our
initial experimental results demonstrate its power as well as its extensibility.

2 Background and Related Work

The adoption of security ontologies is continuously increasing for network security
and risk management fields. Strassner suggests that the traditional information and
data models are not capable to describe detailed semantics required to reason about
behaviour. His work [5] modifies the existing DEN-ng policy model to support and
generate ontologies for governing behaviour of network devices and services.

Tsoumas et al. [6] develop a security ontology to perform network security man-
agement thus modelling assets (e.g., data, network, services), countermeasures (e.g.,
firewall, antivirus) and the related risk assessment. They also describe a framework for
security knowledge acquisition and management.

Fenz et al. [7] define a knowledge model (defining a security ontology) to support
risk management domain, incorporating security concepts like threats, vulnerabilities,
assets, controls, and related implementation. . Another work [8] proposes an ontology-
based approach to model risk and dependability taxonomies. The related framework

- ~

e ~
N

)

~e —~ s

—r

;
L.
- e
%
g
waorkstations

{ _) Filtering domain (zone}

.
O IP subnet

Fig. 1. The reference network used to validate our approach.

contains a tool for simulating threats against the modeled ontology. KAoS represents
another approach to policy-based management using the description logic and ontolo-
gies from representation to conflict analysis and translation [9,10].

3 Case Study

We present in Fig. 1 the network use as a case study to validate our approach and
to present its main results and implementation. The network contains 90 nodes divided
into the following categories: workstation, server, router, firewall and switch. A server is
a computer that provides a service through a Service Access Point (SAP). The network
is organized into different IP subnetworks, according to different company’s depart-
ments and it includes also a DMZ (De-Militarized Zone). The network is divided into
seven filtering domains, called zones [11]. Each zone is delimited by network elements
with filtering capability (firewalls in this case study).

In this network we will configure two categories of security controls: traffic filtering
and channel protection policies. Enforcing these kind of policies is theoretically easy,
nevertheless they are constant sources of problems and mistakes, especially when the
size on the network grows and for non-experienced administrators [12].

4 Our Approach

The objective of our ontological framework is to derive configurations for security con-
trols - based on ACL (Access Control List) and secure channel mechanisms - from a

reasoning

¥

Reasoning
Manager

o
system ° c
- o
description m -
Ontology % logic

high level S associations
policies gc-
/ -

environmental 5| Configuration
Vd
data Manager

Fig. 2. The logical workflow of the OPoT system.

fixed set of business-oriented policies using automatic reasonings and interactions with
the security administrator. The main phases of this process are presented in Fig. 2. The
security administrator is the person in charge of configuring network security: we as-
sume that he can access all the information required to generate configurations.

The ACL controls are derived both for devices (e.g., router, managed switch, fire-
wall) and end-nodes. On the end-nodes we can distinguish two classes of controls: OS-
level (e.g., local firewall) and application-level (e.g., web server access control). We also
aim at configuring secure channels: TLS (end-to-end) and IPsec (end-to-end, gateway-
to-gateway and end-node-to-gateway). The output of this process is represented in a
vendor-independent format inspired to the CIM Simplified Policy Language [13] and
IETF Policy Core Information Model [14] and its extensions [15].

To simplify the problem, the configurations are obtained as translation of a set of
twelve basic policies. Every policy is a statement describing a business-level security
objective. Examples are “every user must access only the services he is authorized to
use”, “business services must be connected securely to their components located in
other parts of the network at higher security”. We analyzed different sources to decide
the sample policies to support. First we combined our experience and interviews with
the security administrators in our institution (representative of an open environment
with several unrelated actors, multiple levels of security and untrusted users) and part-
ners (representative of private networks handling highly sensitive data and hosting some
public services). Moreover, we analyzed different policy models (e.g., Role Based Ac-
cess Control (RBAC) [16] and Mandatory Access Control [17]). Finally, we examined
publicly available policy templates, in particular the SANS Security Policy Project [18].

Together with policies, OPoT takes as input the initial security ontology containing
the class hierarchy and the system description represented in the P-SDL language [19].

The process of policy translation as knowledge refinement and enrichment has been
designed to mimic the behaviour of skilled and experienced administrators in acquir-
ing environmental information and translating it to actual rules to enforce best secu-

rity practices. Knowledge enrichment is performed through two entities, the Reasoning
Manager (RM) and the Configuration Manager (CM). The RM coordinates a set of
reasonings that apply logical inference on the knowledge base to increment it using a
standard ontology reasoner. Example of reasonings are the automatic identification of
DMZs, the classification of services according to their scope, the classification of SAP.
However, not all the required information can be derived from the inputs. The CM co-
ordinates the import of external/environmental non-deducible information by driving
the administrator to collect missing information. For example, OPoT may asked to pro-
vide the host-user assignments, the user’s task assignment according to the company’s
organization charts (e.g., expressed using RBAC), or description of business services
provided through the network (e.g., the WS-CDL description of services).

The logical workflow of our framework is simple. First of all, the administrator
chooses among the available policies. Every policy entails the type of information
required to refine it, that is, the reasoning and data to be acquired to be enforced.
Then, system description is used to populate the initial ontology. Subsequently, OPoT
asks RM to execute the implied reasonings. Reasonings also warn the administrator
about possible anomalies. If needed, CM asks the administrator to provide missing data
through a graphical user interface. RM runs always before CM because it does not re-
quire effort from the administrators. This cycle may run more than once until the policy
is enforceable. If in a cycle the ontology is not modified and the goals are still not
achieved, the policy is considered not enforceable and a warning message is sent to the
administrator.

The last entity, the Extractor, derives the logical associations from the ontology and
then it completes the translation. A logical association expresses an interaction between
parties (typically one-to-many) and the related communication properties (filtering con-
straints, e.g., need-to-access condition). But it is not our desired output, yet. The transla-
tion process distinguishes between topological-independent and topological-dependent
logical associations. In the first case (e.g., end-to-end interactions such as TLS protected
channel) the process directly generates the configurations for the end nodes. In the sec-
ond case, the network topology needs to be analyzed. All paths between the source and
destination nodes are identified and rules are generated for the involved devices. For
example, when a company client need to reach an internal service, OPoT configures all
the firewalls in the paths between them.

4.1 The Security Ontology

Our security ontology is structured in three levels (Fig. 3). The first one contains classes
whose instances cannot be derived from other classes. First level instances are created
gathering information contained in external files and running algorithms to manipu-
late it (e.g., filtering zones). The next levels are generated through either the usage of
a standard reasoner (in our case Pellet [20]) or using the reasonings. The higher the
level, the more detailed the information; for example, in the second level computers are
classified in workstations or servers and in the third level the workstations are further
classified in shared or personal. The security ontology contains several properties link-
ing the instances of different classes. This permits to navigate and analyze the ontology

First-level Second-level Third-level

- PersonalWorkstation
Workstation .
SharedWorkstation
Server :
. blieSorvor
Service PublicService)
UndefinedService) BorderZone)
Zone —(ZoneFW DMZ D
GenericUser) ExpectedDMZ)
User
Well-KnownUser
Net , , PartiallyUsedSwitch
g
R FullyUsedSwitch
\\ SAP UnsafeSAP
‘\ SafeSAP
\ Router »——(__BorderRouter)
(_ Roe)
CipherSuite
WirelessAccessPoint

Fig. 3. Security ontology.

for deduction purposes. Thus, for example, an instance in the server class has a property
that permits linking it to the instances of the SAP and it is linked to the Ciphersuites.

The ontology has been defined to perform a first automatic classification of sec-
ond/third level classes. For instance in Fig. 4 is presented the OWL class definition that
classifies zones as DMZ if they contains public server and they are linked to a border
zone (zone including an access to Internet). If a zone satisfies only the first condition, it
is considered as expected DMZ and it will be analyzed to check its characteristics. After
system description is scanned, a reasoner is run to perform the automatic classification.

Every reasoning is characterized by a set of input ontology classes and a set of
output ontology classes, subclasses of the input ones. The reasoner tries to “move” the
instances of input classes towards higher levels of details, that is, to output classes. A
set of SPARQL [21] queries permits to retrieve the instances to be analyzed together
with all the data useful for the decision.

For instance, the ServerReasoning takes as input the instances of Service classes,
tries to understand if they provide functionalities that should be visible from the out-
side. In order to do this, the reasoning collects information about the firewall zones
and possibly the potential DMZ, if already identified. For example, a service that is
reachable from the Internet without encountering a firewall is considered public, but
the administrator is warned about a possible anomaly.

The CM is organized in a set of modules, each one is able to insert information into
the ontology. For this reason each configurator module is characterized by the classes
whose instances may be inserted, the classes whose instances can be modified and the
properties that can be added. For instance, the UsersRoleConfigurator module manages

the RBAC information and it only inserts instances of the RBAC classes while the
ServiceConfigurator, able to parse WS-CDL information, may move instances of the
Service classes to PublicService or PrivateService classes and it can add the properties
NeedtoAccess, a property we introduced to represent the network connections that must
be guaranteed for the correct policy enforcement. Additionally, both the configurator
modules and reasonings contain precedences, a list of modules that must be run before.

Every policy is characterized by its “goal”, that is, the properties that must be de-
rived to implement it, and a set of subsidiary classes that indicate from which informa-
tion the properties must be derived. In the next section will be presented the case of the
“Every user must access only the services he is authorized to use” policy, having as goal
the NeedToAccess property and auxiliary classes the User class and the Service class.

The OPoT tools uses information about the single components to decide the ones
to execute and the order. Starting from a policy, the tool tries to identify the modules
able to derive the goal properties of the policy, then it identifies the dependencies, e.g.,
which components involve classes that are used as input for detected modules. The
result is a dependency graph, later processed by RM and CM. This approach allows
the maximum flexibility. In fact, every time a new module is added it is enough to
specify which classes it uses and OPoT can automatically decide when they can be
used. Nevertheless, a convergence problem arises, indeed, modules may work on the
same data originating a loop in the dependency graph. In our example, the convergence
is assured because existing modules have been designed to reduce it and because the
entire cycle is repeated until the policy is correctly implemented. The solution of this
problem will be improved in future versions of the tool.

4.2 An Example of Policy Translation

As an example we present here the case of derivation of filtering rules associated to
the policy “Every user must access only the services he is authorized to use”. This
represents a typical goal in many organizations, implicitly adopted during network con-
figuration. Translating this policy means, as a minimum, to insert all the necessary
NeedToAccess properties inside the ontology from components that manage the Ser-
vice class and the User class. The policy codes in term of ontology classes the best
practice stating that a user is supposed to be authorized to access all the private services
he needs to use for performing his work, all the company’s public services and the In-
ternet, according to the “Remote Access Policy” [18]. A particular attention is devoted
to shared workstation. They are nodes usable by several types of users and therefore
must be able to access all the services needed by these users to perform their work.

OPoT must define the NeedToAccess associations, thus it “understands” that the
first component to run is the UsersRoleConfigurator. In fact, in principle it is not possi-
ble to deduce which services a user needs to use, the CM asks administrator to include
the explicit user-role RBAC description also containing the remote access policy.

OPoT maps users and services to IP nodes. Service information are present in the
ontology in form of SAPs obtained from the system description. The association be-
tween users and IP addresses is a typical information that cannot be derived by the
system description. For this reason, OPoT asks the administrator to provide the work-
station mapping: a user is assumed to use his workstation or a shared one.

<owl:Class rdf:about="#DMZ>
<owl:equivalentClass >
<owl: Class>
<owl:intersectionOf rdf:parseType="Collection”>
<owl: Restriction >
<owl:onProperty rdf:resource="#contains”/>
<owl:someValuesFrom rdf:resource="#PublicServer”/>
</owl:Restriction>
<owl:Restriction >
<owl:onProperty rdf:resource="#isLinkedTo”/>
<owl:someValuesFrom rdf:resource="#BorderZone”/>
</owl:Restriction >
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass >
<rdfs:subClassOf rdf:resource="#ZoneFW”/>
</owl:Class>
<owl:Class rdf:about="#ExpectedDMZ">
<owl:equivalentClass>
<owl: Restriction >
<owl:onProperty rdf:resource="#contains”/>
<owl:someValuesFrom rdf:resource="#PublicServer”/>
</owl:Restriction>
</owl:equivalentClass >
<rdfs:subClassOf rdf:resource="#ZoneFW”/>
</owl: Class>
<owl:Class rdf:about="#PublicServer”>
<owl:equivalentClass >
<owl: Restriction>
<owl:onProperty rdf:resource="#provides”/>
<owl:someValuesFrom rdf:resource="#PublicService”/>
</owl:Restriction >
</owl:equivalentClass >
<rdfs:subClassOf rdf:resource="#Server”/>
</owl: Class>
<owl:Class rdf:about="#PublicService”>
<rdfs:subClassOf rdf:resource="#Service”/>
</owl:Class>

Fig. 4. An extract of the OWL ontology that tries to automatically classify the DMZ

OPoT then deduces from auxiliary classes as well as input classes that services must
be classified. As a pre-requisite the DMZ must be identified. The objective of a DMZ
is to provide services to a zone considered at a lower security level. Usually a public
DMZ is a subnetwork directly connected to the border firewall (if there is one) or to
a firewall connected to a border router where services are located. The Internet is sup-
posed at security level 0, while the internal network and the DMZ are at level 1. Then,
the reasoning looks for other internal DMZs, it identifies the separation domains, and
assigns security levels accordingly. The assumption is that a service in DMZ at security
level [must be available from zones having security level [— 1 but not from the ones at
level [— 2. For services for which it is not possible to identify the scope, administrator
is asked to provide the classification. This reasoning reports a set of anomalies to the
administrators: the DMZ should not contain workstations and services in zones at secu-
rity level [should not be accessible to hosts in zones at level | — 2 or smaller creating
breaches in the security “compartments”. After CM and RM have run all the identified
components and possibly repeated the workflow, all the needed properties are derived.

System description
Semantic

SDL
(SoL) Security ontology
F (OWL)
Framework <:>

4’\':‘:::.‘::;" H
‘-j'zg: SemanticNET
Reasoner
(PELLET) {}
Logical
associations

Fig. 5. Architecture.

S Implementation

OPoT is implemented in Java (Fig.5) using the Jena API [22] to manage the security
ontology. The system description and the environmental data are expressed in XML
using standards when available (e.g., RBAC profile of XACML [23]). Our security on-
tology is written in OWL-DL [24] and the software used to edit it is Protégé [25]. A set
of classes parses the system description and runs a series of graph-based algorithms to
extract additional information (e.g., the filtering zones). The policies are represented as
Java classes. A policy links the reasonings to gather the information needed to its trans-
lation. Also reasonings are implemented as Java classes that interact with the ontology
through the Jena framework and the Pellet reasoner [20] using the Description Logic
Interface (DIG) [26].

While deriving the logical associations, OPoT performs several controls, according
to best practice, to find ambiguities or conflicts. In case of anomalies, it shows to ad-
ministrator the list of the problems and suggests him the possible solutions. Finally, the
logical associations are extracted using SPARQL [21] to query ontology.

Considering the network in Fig.1 and seven out of twelve policies, the tool spends
about two minutes of CPU time from the policy selection to the translation. This test
was performed using a PC with a 2 GHz CPU and 1 GB of RAM. The max memory
utilization was about 30 MB.

6 Conclusion and Future Work

This paper presented OPoT, an ontology-based approach to policy translation. It uses a
security ontology to drive the administrator from high-level policy specification downto
system configuration, mainlt at IP level. In principle, OPoT can be extended to use
other network security controls, such as IEEE 802.1x. Moreover, automatic reasoning
is currently able to cope only with a pre-defined set of policies. In future, when the
automatic semantic analysis of text will came of age, we hope to derive the policies
directly from a high-level textual specification.

References

1.

w

10.

11.

12.

13.

14.
15.

16.
17.

18.
19.

20.
21.

22.
23.

24.

25.
26.

Agrawal, D.: Business impact of research on policy for distributed systems and networks.
In: IEEE POLICY-2007, Bologna, Italy (June 2007)

. Westerinen, A., Schnizlein, J., et al., J.S.: Terminology for Policy-Based Management. RFC-

3198 (November 2001)

. Strassner, J.C.: Policy Based Network Management. Morgan Kauffman Publishers (2004)
. Gruber, T.R.: Toward Principles for the Design of Ontologies Used for Knowledge Sharing.

Int. Journal Human-Computer Studies 43(5-6) (1995) 907-928

. Strassner, J., Neuman de Souza, J., Raymer, D., Samudrala, S., Davy, S., Barrett, K.: The de-

sign of a new policy model to support ontology-driven reasoning for autonomic networking.
In: LANOMS 2007, Rio de Janeiro, Brasil (Sept. 2007) 114-125

. Tsoumas, B., Gritzalis, D.: Towards an ontology-based security management. In: Int. Conf.

on Advanced Information Networking and Applications, Vienna, Austria (2006) 985-992

. Fenz, S., Ekelhart, A.: Formalizing information security knowledge. In: ASIACCS, Sydney,

Australia (2009) 183-194

. Ekelhart, A., Fenz, S., Klemen, M., Weippl, E.: Security ontologies: Improving quantitative

risk analysis. In: Hawaii Int. Conf. on System Sciences, Big Island, Hawaii (2007) 156a

. Uszok, A., Bradshaw, J.M., Johnson, M., Jeffers, R., Tate, A., Dalton, J., Aitken, S.: KAoS

policy management for semantic web services. IEEE Intelligent Systems 19(4) (2004) 32-41
Uszok, A., Bradshaw, J., Lott, J., et al.: New developments in ontology-based policy manage-
ment: Increasing the practicality and comprehensiveness of KAoS. In: IEEE POLICY-2008,
Palisades (NY, USA) (June 2008) 145-152

Mayer, A., Wool, A., Ziskind, E.: Offline firewall analysis. Int. J. Inf. Secur. 5(3) (2006)
125-144

Al-Shaer, E., Hamed, H.: Modeling and Management of Firewall Policies. IEEE Transac-
tions on Network and Service Management 1(1) (April 2004) 2-10

Agrawal, D., Calo, S., Lee, K.W., Lobo, J.: Issues in designing a policy language for dis-
tributed management of it infrastructures. In: IFIP/IEEE Int. Symp. on Integrated Network
Management, Munich, Germany (2007) 30-39

Moore, B., Ellesson, E., Strassner, J., Westerinen, A.: Policy core information model (RFC-
3060) (February 2001)

Moore, B.: Policy core information model (PCIM) extensions (RFC-3460) (January 2003)
NIST: Role based access control. http://csrc.nist.gov/groups/SNS/rbac/

Loscocco, P.A., Smalley, S.D., Muckelbauer, P.A., Taylor, R.C., Turner, S.J., Farrell, J.F.:
The inevitability of failure: The flawed assumption of security in modern computing envi-
ronments. In: National Information Systems Security Conf., Crystal City (VA, USA) (1998)
303-314

SANS: The SANS Security Policy Project. http://www.sans.org/resources/policies/
POSITIF Consortium: The POSITIF system description language (P-SDL).
http://www.positif.org/ (2007)

Clark&Parsia: Pellet: The open source OWL DL reasoner. http://clarkparsia.com/pellet
Clark, K.G., Feigenbaum, L., Torres, E. SPARQL protocol for RDF.
http://www.w3.org/TR/rdf-sparql-protocol/

HP-Labs: Jena a semantic web framework for java. http://jena.sourceforge.net/

OASIS: Core and hierarchical role based access control (RBAC) profile of XACML v2.0.
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-rbac-profile1-spec-os.pdf
Smith, M.K., Welty, C., McGuinness, D.L.: OWL web ontology language guide.
http://www.w3.org/TR/owl-guide/ (2004)

Stanford: Protégé. http://protege.stanford.edu/

Bechhofer, S.: The DIG description logic interface: DIG/1.0

