
Journal of Information Assurance and Security 4 (2009) 449-457

Received June 10, 2009 1554-1010 $ 03.50 Dynamic Publishers, Inc.

Trusted-Computing Technologies
for the Protection of Critical Information Systems†

Antonio Lioy, Gianluca Ramunno and Davide Vernizzi

Politecnico di Torino

Dip. di Automatica e Informatica
c. Duca degli Abruzzi, 24 – 10129 Torino (Italy)

{ antonio.lioy, gianluca.ramunno, davide.vernizzi } @ polito.it

† This paper is an extended version of the paper by the same title that appeared in the proceedings of the CISIS’08 conference.

Abstract: Information systems controlling critical
infrastructures are vital elements of our modern society.
Purely software-based protection techniques have
demonstrated limits in fending off attacks and providing
assurance of correct configuration. Trusted computing
techniques promise to improve over this situation by using
hardware-based security solutions. This paper introduces
the foundations of trusted computing and discusses how it
can be usefully applied to the protection of critical
information systems.

Keywords: Critical infrastructure protection, trusted
computing, security, assurance.

1 Introduction

Trusted Computing (TC) technologies have historically
been proposed by the TCG (Trusted Computing Group) to
protect personal computers from those software attacks that
cannot be countered by purely software solutions. However
these techniques are now mature enough to spread out to
both bigger and smaller systems. Trusted desktop
environments are already available and easy to setup.
Trusted computing servers and embedded systems are just
around the corner, while proof-of-concept trusted
environments for mobile devices have been demonstrated
and are just waiting for the production of the appropriate
hardware anchor (MTM, Mobile Trusted Module).

TC technologies are not easily understood and to many
people they immediately evoke the “Big Brother” phantom,
mainly due to their initial association with controversial
projects from operating system vendors (to lock the owner
into using only certified and licensed software components)
and from providers of multimedia content (to avoid
copyright breaches). However, TC is nowadays increasingly
being associated with secure open environments, also
thanks to pioneer work performed by various projects
around the world, such as OpenTC [1], co-funded by the
European Commission.

On the other hand, we have an increasing number of vital
control systems (such as electric power distribution, railway

traffic, and water supply) that heavily and almost
exclusively rely on computer-based infrastructures for their
correct operation. In the following we will refer to these
infrastructures with the term “Critical Information Systems”
(CIS) because their proper behaviour in handling
information is critical for the operation of some very
important system.

This paper briefly describes the foundations of TC and
shows how they can help in creating more secure and
trustworthy CIS.

2 Critical Information Systems (CIS)

CIS are typically characterized by being very highly
distributed systems, because the underlying controlled
system (e.g. power distribution, railway traffic) is highly
distributed itself on a geographic scale (Figure 1).

In turn this bears an important consequence: it is nearly
impossible to control physical access to all its components
and to the communication channels that must therefore be

Figure 1: Typical CIS architecture

450 Lioy, Ramunno and Vernizzi

very trustworthy. In other words, we must consider the
likelihood that someone is manipulating the hardware,
software, or communication links of the various distributed
components. This likelihood is larger than in normal
networked systems (e.g. corporate networks) because nodes
are typically located outside the company’s premises and
hosted in shelters easily violated. For example, think of the
small boxes containing control equipment alongside railway
tracks or attached to electrical power lines.

Furthermore, CIS are usually composed by nodes of many
types: for instance sensors that belong to a wireless sensor
network (WSN) can be used to read data from the physical
environment, while servers based on general purpose
hardware collect and analyse those data. Because of the
heterogeneous nature of the control networks, different
protection mechanisms must be applied according to the
type of the node.

An additional problem is posed by the fact that quite
often CIS are designed, developed, and deployed by a
company (the system developer), owned by a different one
(the service provider), and finally maintained by yet another
company (the maintainer) on a contract with one of the first
two. When a problem occurs and it leads to an accident, it is
very important to be able to track the source of the problem:
is it due to a design mistake? or to a development bug? or to
an incorrect maintenance procedure? The answer has
influence over economical matters (costs for fixing the
problem, penalties to be paid) and may be also over legal
ones, in the case of damage to a third-party.

Even if no damage is produced, it is nonetheless
important to be able to quickly identify problems with
components of a CIS, being them produced incidentally or
by a deliberate act. For example, in real systems many
problems are caused by mistakes made by maintainers when
upgrading or replacing hardware or software components.

Any technical solution that can help in thwarting attacks
and detecting mistakes and breaches is of interest, but
nowadays the solutions commonly adopted – such as
firewall, VPN, and IDS – heavily rely on correct software
configuration of all the nodes. Unfortunately this cannot be
guaranteed in a highly distributed and physically insecure
system as a CIS. Therefore better techniques should be
adopted not only to protect the system against attacks and
errors but also to provide assurance that each node is
configured and operating as expected. This is exactly one of
the possible applications of the TC paradigm, which is
introduced in the next section.

3 Trusted Computing principles

In order to protect computer systems and networks from
attacks we rely on software tools in the form of security
applications (e.g. digital signature libraries), kernel
modules (e.g. IPsec) or firmware, as in the case of firewall
appliances. However software can be manipulated either
locally by privileged and un-privileged users, or remotely
via network connections that exploit known vulnerabilities
or insecure configurations (e.g. accepting
unknown/unsigned Active-X components in your browser).
It is therefore clear that it is nearly impossible to protect a

computer system from software attacks while relying purely
on software defences.

To progress beyond this state, the Trusted Computing
Group (TCG)1, a not-for-profit group of ICT industry
players, developed a set of specifications to create a
computer system with enhanced security named “trusted
platform”.

A trusted platform is based on two key components:
protected capabilities and shielded memory locations. A
protected capability is a basic operation (performed with an
appropriate mixture of hardware and firmware) that is vital
to trust the whole TCG subsystem. In turn capabilities rely
on shielded memory locations, special regions where is safe
to store and operate on sensitive data.

From the functional perspective, a trusted platform
provides three important features rarely found in other
systems: secure storage, integrity measurement and
reporting. The integrity of the platform is defined as a set of
metrics that identify the software components (e.g.
operating system, applications and their configurations)
through the use of fingerprints that act as unique identifiers
for each component. Considered as a whole, the integrity
measures represent the configuration of the platform. A
trusted platform must be able to measure its own integrity,
locally store the related measurements and report these
values to remote entities. In order to trust these operations,
the TCG defines three so-called “roots of trust”,
components that must be trusted because their misbehaviour
can not be detected:

• the Root of Trust for Measurements (RTM) that
implements an engine capable of performing the
integrity measurements;

• the Root of Trust for Storage (RTS) that securely holds
integrity measures and protect data and cryptographic
keys used by the trusted platform and held in external
storages;

• the Root of Trust for Reporting (RTR) capable of
reliably reporting to external entities the measures held
by the RTS.

The RTM can be implemented by a measurement engine
(i.e. the CPU) and code. The latter can be the first software
module executed when a computer system is switched on
(i.e. a small portion of the BIOS firmware) or directly the
hardware itself when using processors of the latest
generation. The measurement code, which must be
trustworthy, is called Core RTM (CRTM).

The central component of a TCG trusted platform is the
Trusted Platform Module (TPM) [2]. This is a low cost chip
capable to perform cryptographic operations, securely
maintain the integrity measures and report them. Given its
functionalities, it is used to implement RTS and RTR, but it
can also be used by the operating system and applications
for cryptographic operations although its performance is
quite low.

The TPM is equipped with two special RSA keys, the
Endorsement Key (EK) and the Storage Root Key (SRK).
The EK is part of the RTR and it is a unique (i.e. each TPM
has a different EK) and “non-migratable” key created by the

1 https://www.trustedcomputinggroup.org

Trusted-Computing Technologies for the Protection of Critical Information Systems 451

manufacturer of the TPM and that never leaves this
component. Furthermore the specification requires that a
certificate must be provided to guarantee that the key
belongs to a genuine TPM. The SRK is part of the RTS and
it is a “non-migratable” key that protects the other keys
used for cryptographic functions2 and stored outside the
TPM. Also SRK never leaves the TPM and it is used to
build a key hierarchy. The integrity measures are held into
the Platform Configuration Registers (PCR). These are
special registers within the TPM acting as accumulators:
when the value of a register is updated, the new value
depends both on the new measure and on the old value to
guarantee that once initialized it is not possible to fake the
value of a PCR.

The action of reporting the integrity of the platform is
called Remote Attestation. A remote attestation is requested
by a remote entity that wants evidence about the
configuration of the platform. The TPM then makes a
digital signature over the values of a subset of PCRs to
prove to the remote entity the integrity and authenticity of
the platform configuration. For privacy reasons, the EK
cannot be used to make the digital signature. Instead, to
perform the remote attestation the TPM uses an Attestation
Identity Key (AIK), which is an “alias” for the EK. The
AIK is a “non-migratable” RSA key created by the TPM
whose private part is never released unencrypted outside the
chip; this guarantees that the AIK cannot be used by anyone
except the TPM itself.

In order to use the AIK for authenticating the attestation
data (i.e. the integrity measures) it is necessary to obtain a
certificate proving that the key was actually generated by a
genuine TPM and it is managed in a correct way. Such
certificates are issued by a special certification authority
called Privacy CA (PCA). Before creating the certificate,
the PCA must verify the genuineness of the TPM. This
verification is done through the EK certificate. Many AIKs

2 In order to minimize attacks, the SRK is never used for any cryptographic

function but only to protect other keys.

can be created and, to prevent the traceability of the
platform operations, ideally a different AIK should be used
for interacting with each different remote attester.

By using trusted computing it is possible to protect data
via asymmetric encryption in a way that only the platform’s
TPM can access them: this operation is called binding. It is
however possible to migrate keys and data to another
platform, with a controlled procedure, if they were created
as “migratable”.

The TPM also offers a stronger capability to protect data:
sealing. When the user seals some data, he must specify an
“unsealing configuration”. The TPM assures that sealed
data can be only be accessed if the platform is in the
“unsealing configuration” that was specified at the sealing
time.

The TPM is a passive chip disabled at factory and only
the owner of a computer equipped with a TPM may choose
to activate this chip. Even when activated, the TPM cannot
be remotely controlled by third entities: every operation
must be explicitly requested by software running locally and
the possible disclosure of local data or the authorisation to
perform the operations depend on the software
implementation.

In the TCG architecture, the owner of the platform plays
a central role because the TPM requires authorisation from
the owner for all the most critical operations. Furthermore,
the owner can decide at any time to deactivate the TPM,
hence disabling the trusted computing features. The identity
of the owner largely depends on the scenario where trusted
computing is applied: in a corporate environment, the
owner is usually the administrator of the IT department,
while in a personal scenario normally the end-user is also
the owner of the platform.

A Trusted Platform (TP) is a computing system which
exploits the features offered by the TPM and the Core RTM
to build advanced security properties. Usually a Trusted
Platform is composed of different layers (Figure 2):

• the Trusted Computing Base (TCB) is the lower layer
that is made up by the TPM, optionally a virtualization
engine, the driver of the hardware components, some
software service needed to manage the security features
and a software layer (TSS, the TCG Software Stack) that
allows the interaction with the TPM.

• the trusted applications are in charge of performing
critical operations. These applications take advantage of
the security services offered by the TCB (for instance, by
using the sealing to protect important data such as the
cryptographic keys).

• the untrusted applications are common applications
whose malfunctioning is not harmful for the system. For
these applications there is no need to provide strong
security features.

Run-time isolation between software modules with
different security requirement (i.e. isolating trusted from
untrusted applications) is an interesting complementary
requirement for a trusted platform. Given that memory
areas of different modules are isolated and inter-module
communication can occur only under well specified control
flow policies, then if a specific module of the system is

Figure 2: Typical architecture for Trusted Platforms

452 Lioy, Ramunno and Vernizzi

compromised (e.g. due to a bug or a virus), the other
modules that are effectively isolated from that one are not
affected at all. Today virtualization is an emerging
technology for PC class platforms to achieve run-time
isolation and hence is a perfect partner for a TPM-based
trusted platform.

The current TCG specifications essentially focus on
protecting a platform against software attacks. The AMD
Virtualization (AMD-V)3 [3] and the Intel Trusted
Execution Technology (TXT)4 [4] initiatives, besides
providing hardware assistance for virtualization, increase
the robustness against software attacks and the latter also
starts dealing with some basic hardware attacks. In order to
protect the platforms also from physical attacks, memory
curtaining and secure input/output should be provided:
memory curtaining extends memory protection in a way
that sensitive areas are fully isolated while secure
input/output protects communication paths (such as the
buses and input/output channels) among the various
components of a computer system. Intel TXT focuses only
on some so called “open box” attacks, by protecting the
slow buses and by guaranteeing the integrity verification of
the main hardware components on the platform.

4 The Open Trusted Computing Project

OpenTC5 is a FP6 EC co-funded project that applied TC
techniques to the creation of an open and secure computing
environment by coupling them with advanced virtualization
techniques. In this way it is possible to create on the same
computer different execution environments mutually

3 http://www.amd.com/virtualization
4 http://www.intel.com/technology/security/
5 http://www.opentc.net

protected and with different security properties. The overall
architecture of the OpenTC environment is shown in
Figure 3.

OpenTC uses virtualization layers – also called Virtual
Machine Monitors (VMM) or hypervisors – and supports
two different implementations: Xen [5] and L4/Fiasco [6].
This layer hosts compartments, also called virtual machines
(VM), domains or tasks, depending on the VMM being
used. Some domains host trust services that are available to
authorised user compartments. Various system components
make use of TPM capabilities, e.g. in order to measure other
components they depend on or to prove the system integrity
to remote challengers. Each VM can host an open or
proprietary operating environment (e.g. Linux or Windows)
or just a minimal library-based execution support for a
single application.

The viability of the OpenTC approach has been
demonstrated by creating three proof-of-concept prototypes,
the so-called PET, CC@H and VDC ones, that are publicly
available at the project’s web site.

The PET (for “Private Electronic Transactions”) scenario
[7] aims to improve the trustworthiness of interactions with
remote servers. Transactions are simply performed by
accessing a web server through a standard web browser
running in a dedicated trusted compartment. The server is
assumed to host web pages related to a critical financial
service, such as Internet banking or another e-commerce
service. The communication setup between the browser
compartment and the web server is extended by a protocol
for mutual remote attestation tunnelled through an
SSL/TLS channel. During the attestation phase, each side
assesses the trustworthiness of the other. If this assessment
is negative on either side, the SSL/TLS tunnel is closed,
preventing further end-to-end communication. If the

Figure 3: The OpenTC architecture.

Trusted-Computing Technologies for the Protection of Critical Information Systems 453

assessment is positive, end-to-end communication between
browser and server is enabled via standard HTTPS
tunnelled over SSL/TLS. In this way the user is reassured
about having connected to the genuine server of its business
provider and about its integrity, and the provider knows that
the user has connected by using a specific browser and that
the hosting environment (i.e. operating system and drivers)
has not been tampered with, for example by inserting a key-
logger.

The CC@H (for “Corporate Computing at Home”)
scenario [8, 9] demonstrates the usage of the OpenTC
solution to run simultaneously on the same computer
different non-interfering applications. It reflects the
situation where employers tolerate, within reasonable limits,
the utilization of corporate equipment (in particular
notebooks) for private purposes but want assurance that the
compartment dedicated to corporate applications is not
manipulated by the user. In turn the user has a dedicated
compartment for his personal matters, included free Internet
surfing which, on the contrary, is not allowed from the
corporate compartment. The CC@H scenario is based on
the following main functional components:

• boot-loaders capable of producing cryptographic digests
for lists of partitions and arbitrary files that are logged
into PCRs of the TPM prior to passing on control of the
execution flow to the virtual machine monitor (VMM)
or kernel it has loaded into memory;

• virtualization layers with virtual machine loaders that
calculate and log cryptographic digests for virtual
machines prior to launching them;

• a graphical user interface enabling the user to launch,
stop and switch between different compartments with a
simple mouse click;

• a virtual network device for forwarding network packets
from and to virtual machine domains;

• support for binding the release of keys for encrypted
files and partitions to defined platform integrity metrics;

• a trusted channel built upon TLS extensions [10] to let
the Corporation remotely attest platform’s TCB and the
Corporate Compartment.

The last scenario called VDC (for “Virtual Data Centre”)
extends the concepts of the CC@H scenario to cover the
data centre’s use cases. In this context, two main
stakeholders come into play: data centre customers and
administrators.

Data centre customers want to run applications in a
remote execution environment while having guarantees that
they are properly isolated. Additionally, customers require
management support to start, stop and reconfigure their
execution environments and allocate (virtual) resources.
They also may desire to split security critical and non-
critical parts between different virtual domains, with
dedicated gateways between them. Finally they may want to
provide services to external users (e.g. partners of data
centre customers) and therefore it must be possible to leave
open access to part of the resources allocated while
protecting the rest of the system.

On another hand, data centre administrators need to have
an overview of how many Trusted Virtual Domains (TVD)
[11] are hosted at the infrastructure, which nodes they are
using, and which free resources could be allocated to new
and existing customers. Moreover each customer must (be
obliged to) adhere to the policy defined by contract without
interfering with other customers’ policies.

Therefore the goal of the architecture for the Virtual Data
Centre is to provide an infrastructure capable of running
different virtual machines provided by customers (possibly
spreading them over many different physical hardware)
while offering separation mechanisms for shared network
and storage. The scenario also requires a management
infrastructure capable of automated deployment of virtual
resources like TVD networks [12] and automated
enforcement of data centre’s and customers’ security
policies [13]. Finally management consoles with improved
security properties are required for administering multiple
disjoint domains in parallel.

5 Using TC to protect CIS

CIS security threats can be grouped into the following three
main categories.

T1 (malware). CIS are composed by different software
modules running over a distributed computing system. This
software can contain viruses, trojans or spyware as well as
security holes due to bad programming. Furthermore, as a
CIS is typically an heterogeneous system developed by
different parties and continuously evolving through years,
these types of problem are likely to happen often enough to
consider this menace as quite a serious one.

T2 (insiders). CIS are large systems administered by
many different subjects over a wide area. In this context it is
not unlikely to find some unfaithful operator to damage the
CIS or even the underlying physical system. These subjects
know enough about the system to be considered a real and
powerful threat.

T3 (external attackers). As nowadays common in every
networked system, there are attackers that try to gain access
to the computing systems from outside. Since CIS often
control vital physical systems (e.g. water distribution) in
addition to classical motivations (such as fame and profit)
terrorism must also be taken into account.

In addition to these threat categories, it is also possible to
group the possible attacks into two main categories
according to their target: the communications or the
platforms.

Network attacks target the communication among the
nodes of the CIS. For instance, such attacks can lead to
disclosure of data read by the sensors or modification of the
control parameters sent to the physical operating
equipment, easily provoking the misbehaviour of the CIS
system. Moreover, due to poor network configuration, the
attackers could sniff passwords if they are transmitted in
clear on the network, or monitor the traffic to gain
information about the system activity.

Platform attacks are carried out directly against the nodes
of the CIS. Local vulnerabilities – such as poor password
choice, missing security patches or bad configuration of the

454 Lioy, Ramunno and Vernizzi

nodes – can be used to gain access to the system or to
perform a privilege escalation.

TC can help to provide protection against these threats
and attacks and also benefit the general design and
operations of a CIS in several ways.

5.1 Node state verification

In a highly distributed and physically unprotected system it
is of utmost importance to know if the software image of
each node has been tampered with. The remote attestation
capability of TC can be used to request and reliably report
the software state of a remote node.

This is especially important when several players concur
to the design, management, operation, and maintenance of a
CIS. Software modules can be unintentionally modified due
to human errors, or deliberately modified due to attacks, but
both cases will be quickly detected when performing a
remote attestation.

Furthermore, TC may force operators to keep up to date
the software running on their nodes: network access could
be restricted only to those nodes that have installed relevant
security patches, while the not updated ones may be either
isolated or allowed only to access a limited network area
just for urgent administrative operations (such as security
updates).

Verification could also take place in a different way: a
central management facility could poll the various nodes by
opening network connections towards them just to check via
remote attestation the software status of the nodes. In this
way it would be very easy to detect mis-configured elements
and promptly reconfigure or isolate them, leading to a
powerful distributed Intrusion Detection System (IDS).

5.2 Trusted authentication

Proper authentication is the first step towards achieving
effective access control [16]. Authentication is usually
enforced by assigning login accounts to authorized users
who can then access the network using their passwords.

However, this is not a strong security control: users easily
fall victim of social engineering attacks or their passwords
are stolen by malware such as key loggers. Furthermore, it
is also possible that the remote system used for
authentication is a rogue one.

TC can help by protecting credentials used for
authentication and preventing the possibility that a rogue
system is used for authenticating. This is done by using
sealing to store the access credentials (e.g. username and
password) and by verifying the platform integrity prior of
providing access to the credentials. In this way an
individual can unseal the credentials and gain access to the
CIS only if he both provides the correct passphrase and uses
a correctly configured and un-tampered system. In this
scenario, it is impossible for an attacker to use a CIS user
itself as attack vector.

If a stronger authentication mechanism is needed – such
as smart card based login [15] – the TPM itself can be used
as a smart card to store sensitive data (e.g. the private key of
the user), with a higher security level because the key can be
used only by a specific program while a stolen smart card
can be used on any system and with any application.

5.3 Trusted log

TC opens also the door to reliable logging, where log files
contain not only a list of events but also a trusted trace of
the component that generated the event and the system state
when the event was generated.

This is particularly useful to enforce a non-repudiation
policy, to support evidence creation for computer forensics,
or to detect false logging events created by an attacker to
mess-up the log.

Additionally the log file could be manipulated only by
trusted applications if it was sealed against them, so that no
direct editing (for insertion or cancellation) would be
possible, for example by a mis-behaving administrator.

5.4 Data protection

In general TC helps to protect sensitive data by hardware
means. In particular, sealing protects critical data from
access by unauthorized software because access can be
bound to a well-defined system configuration.

This feature allows the implementation of fine-grained
access control schemes that can prevent agents from
accessing data they are not authorized for.

Moreover, it blocks the access to those data in the case of
an attack to the node. Again, in a large distributed scenario,
where it is impossible to guarantee the physical security of
each node, this is an essential feature against unauthorized
software manipulation of the nodes.

This also becomes very important when several
applications with different trust level are running on the
same node and maybe these applications have been
developed by providers with different duties. In this way we
can easily implement the well-known concept of “separation
of duties”: even if a module can by-pass the access control
mechanisms of the operating system and directly access the
data source, it will be unable to operate on it because the
TPM and/or security services running on the system will not
release to the module the required cryptographic
credentials.

5.5 Trusted sensor networks

TC can protect also the sensors used to collect data can in a
CIS. While the concept of trusted WSN is quite novel and
there is not a specification for TC-compliant hardware for
sensors, it is already possible to identify fields where TC
can be applied thus enhancing the overall protection. It is
important to protect both the sensors’ integrity and the
communication between the sensors and the other nodes.

The communication can be protected using standard
cryptography. Due to the limited computing resources and
the low cost of most sensors, it is likely that a simple
protocol based on symmetric cryptography is used. In this
context TC will enhance the security by providing means
for protecting the secret keys shared between the sensors
and the controlling nodes. Where it is possible, the sensors
should be equipped with a hardware component that will
ensure the protection of the keys. If this is not possible due
to limits to the cost of the sensor, the key could be stored on
the controlling node and TC will guarantee that
communication not protected with such key will be rejected,
leading to dropping packets that were possibly sniffed or

Trusted-Computing Technologies for the Protection of Critical Information Systems 455

crafted by an attacker. On the other side, if the design
allows it, the sensor can be provided with TC-oriented
hardware components (such as Roots of Trust) that will
enable secure storage and integrity measurement and
reporting.

Additionally, thanks to the special architecture of the
sensors, it is possible to implement promising security
features. For instance, recently direct support for the Java
programming language has been introduced on many
sensors and some of them are capable of running a tiny Java
Virtual Machine (JVM) as operating system. The JVM
allows a fine granularity control (i.e. it can work at class
granularity) which can be used as foundation to develop a
fine-grained system. Such system must be capable of
enforcing policy on the communication between the classes.
This result can be achieved by instrumenting the JVM to
selectively block or allow access among the different Java
classes instantiated according to the policy. For instance it
is possible to separate the security-relevant part of an
application (e.g. the code that authenticates the data to
send) from the rest (e.g. the user interface). The access
control system will be capable of granting access to the
secure code if a particular policy applies (e.g. if all the
communications happen in a secure form) and to revoke
such access otherwise.

Another important benefit that TC would bring to the
CIS involves the usage of standard systems [14]. CIS are
now in their third evolution phase. After the first monolithic
systems composed by mainframes, they evolved to
distributed architectures where multiple stations were
connected through LAN and shared information in real
time. Nowadays their architecture is based on the usage of
open system architectures rather than a vendor-controlled
proprietary environment and utilizes open standards and
protocols thus distributing functionality across a WAN
rather than a LAN. In this scenario the usage of standard
specifications as the ones proposed by the TCG would help
to interconnect in a trusted and standard way the different
nodes of the system. Moreover, the usage of virtualization
separates the critical parts of the system from the others,
allowing use of third-party components and Commercial-
Off-The-Shelf (COTS) software.

5.6 Cost and performance issues

Designers and managers of CIS should not be scared by the
cost and overhead introduced by TC.

Cost is usually not an issue because – by design – the
TPM has been conceived as a low-cost item that nowadays
is found both as a separate component and as an embedded
element of chipsets (for desktops, servers, and
microcontrollers).

When an extremely low cost for a node is necessary (such
as in very small wireless sensor nodes) then a different
architecture should be used: the TC features should be
available at a higher level hierarchical node that controls
the sensors and reports only its own integrity. The dialog
between the controller and the sensors can be protected with
ad-hoc techniques [17, 18, 19]. With this architecture, trust
based on TC is limited to the core of the CIS while the leafs
should use other non-TC strategies for building trust, such

as duplicate measures to thwart attacks against individual
sensors.

Cryptographic performance of TPM is low because it is
not a general-purpose cryptographic accelerator but just a
trust anchor. It implements the SHA and RSA algorithms,
as well as some limited secure storage. For desktops and
servers this is not a problem as they have plenty of
computing power that can be used to perform the massive
cryptographic operations needed to protect data and
communications. However for small sensor nodes TPM can
become a bottleneck if frequently used. In general, CIS
designers should be aware of the limited cryptographic
power of TPM and therefore require remote attestation only
when really needed.

When it comes to trusted software environments built on
top of TPM, in our experience the XEN-based environment
is powerful but demanding, while the L4/Fiasco set-up is
very lightweight and therefore suitable also for nodes with
limited computational resources.

If a virtualized trusted environment is used, inside a
partition we can execute a full operating system with all its
capabilities (e.g. Suse Linux), a stripped-down OS (such as
DSL, Damn Small Linux) with only the required drivers
and capabilities, or just a mini-execution environment
providing just the required libraries for small embedded
single task applications.

Finally, in case multiple compartments are not needed,
the TC paradigm can be directly built on top of the
hardware, without any virtualization layer, hence further
reducing its footprint.

6 Conclusions

While some technical problems are still to be solved before
large-scale adoption of TC is a reality, we nonetheless think
that it is ready to become a major technology of the current
IT scenario. This is true not only for general purpose ICT
systems but especially for critical information systems
where the TC advantages in terms of protection and
assurance far outweigh its increased design and
management complexity.

Acknowledgment

This work has been partially funded by the EC as part of the
OpenTC project (ref. 027635). It is the work of the authors
alone and may not reflect the opinion of the whole project.

References

[1] D. Kuhlmann, R. Landfermann, H.V. Ramasamy, M.
Schunter, G. Ramunno; D. Vernizzi, “An Open
Trusted Computing Architecture - Secure virtual
machines enabling user-defined policy enforcement”,
IBM Research Report, Computer Science, RZ 3655 (#
99675), August 2006

[2] Trusted Computing Group, TPM Specification Part 1-
3, Version 1.2 Level 2 Revision 103, July 2007

[3] G. Strongin, “Trusted computing using AMD
‘Pacifica’ and ‘Presidio’ secure virtual machine

456 Lioy, Ramunno and Vernizzi

technology”, Information Security Technical Report,
Elsevier, Volume 10, Issue 2, 2005, pp. 120-132,

[4] D. Grawrock, “Dynamics of A Trusted Platform - A
building block approach”, Intel Press, 2009

[5] P.T. Barham, B. Dragovic, K. Fraser, S. Hand, T.L.
Harris, A.Ho, R.Neugebauer, I.Pratt, A.Warfield, “Xen
and the Art of Virtualization”, SOSP-2003: ACM

Symposium on Operating Systems Principles, October
19-22, 2003, Bolton Landing (NY USA), pp. 164-177

[6] M. Hohmuth, “The Fiasco Kernel: Requirements
Definition”, TU Dresden Technical Report, TUD-
FI98-12, December 1998

[7] S. Lo Presti, G. Ramunno, D. Kuhlmann, “Private
Electronic Transactions - The OpenTC proof-of-
concept prototype”, The OpenTC newsletter, no. 3,
January 2008

[8] D. Weber, A. Weber, “‘Corporate Computing at
Home’ – the scenario of the second OpenTC proof-of-
concept prototype”, The OpenTC newsletter, no. 5,
March 2008

[9] D. Kuhlmann, “A quick walkthrough of the second
OpenTC proof-of-concept prototype”, The OpenTC

newsletter, no. 5, March 2008

[10] F. Armknecht, Y. Gasmi, A.R. Sadeghi, P. Stewin, M.
Unger, G. Ramunno, D. Vernizzi, “An efficient
implementation of trusted channels based on Openssl”,
STC’08: ACM workshop on Scalable Trusted

Computing, Nov 1, 2008, Alexandria, (VA USA), pp.
41-50

[11] J. L. Griffin, T. Jaeger, R. Perez, R. Sailer, L. van
Doorn, R. Caceres, “Trusted Virtual Domains: Toward
secure distributed services” HotDep 2005: IEEE

Workshop on Hot Topics in System Dependability,
June 30, 2005, Yokohama (Japan)

[12] S. Cabuk, C.I. Dalton, H.V. Ramasamy, M. Schunter,
“Towards automated provisioning of secure virtualized
networks”, CCS ’07: ACM conference on Computer

and communications security, Oct 29 – Nov 2, 2007,
Alexandria, (VA USA), pp. 235–245

[13] S. Cabuk, C.I. Dalton, K. Eriksson, D. Kuhlmann,
H.V. Ramasamy, G. Ramunno, A.R. Sadeghi, M.
Schunter, C. Stueble, “Towards automated security
policy enforcement in multi-tenant virtual data
centers”, Journal of Computer Security, IOS Press,
Special Issue on EU FP6 Projects, 2009, pp. 1-33

[14] C.L. Bowen, T.K. Buennemeyer, R.W. Thomas, “Next
generation SCADA security: best practices and client
puzzles”, IAW’05: IEEE SMC Information Assurance

Workshop 2005, June 15-17, 2005, West Point (NY,
USA), pp. 426-427

[15] T. Sauter, C. Schwaiger, “Achievement of secure
Internet access to fieldbus systems”, Microprocessors

and Microsystems, Elsevier, vol. 26, no. 7, September
2002, pp. 331-339

[16] V.M. Igure, S.A. Laughter, R.D. Williams, “Security
issues in SCADA networks”, Computers & Security,
Elsevier, October 2006, vol. 25, no. 7, pp. 498-506

[17] K. Kifayat, M. Merabti, Q. Shi, D. Llewellyn-Jones,
“Group Based Secure Communication for Large-Scale
Wireless Sensor Networks”, Journal of Information

Assurance and Security, Dynamic Publishers,
September 2007, vol. 2, no. 2, pp. 139-149

[18] A. Sorniotti, L. Gomez, K. Wrona, L. Odorico,
“Secure and Trusted in-network Data Processing in
Wireless Sensor Networks: a Survey”, Journal of

Information Assurance and Security, Dynamic
Publishers, September 2007, vol. 2, no. 3, pp. 189-199

[19] M. AL-Rousan, A. Rjoub, A. Baset, “A Low-Energy
Security Algorithm for Exchanging Information in
Wireless Sensor Networks”, Journal of Information

Assurance and Security, Dynamic Publishers, March
2009, vol. 4, no. 1, pp. 48-59

Trusted Computing Glossary

AIK (Attestation Identity Key)

Special RSA key used by the TPM for an operation of
remote attestation.

DAA (Direct Anonymous Attestation)
Cryptographic privacy-friendly protocol used in TC to
provide integrity evidence without disclosing the user
identity.

EK (Endorsement Key)

Special RSA key used to asses the genuineness of a TPM.

MTM (Mobile Trusted Module)

Security element based on TPM specifications and used as
basis for TC on embedded and mobile platforms.

PCA (Privacy Certificate Authority)

Special certification authority that verifies the genuineness
of a TPM and issues a certificate for an AIK belonging to
that TPM.

PCRs (Platform Configuration Registers)

Special memory regions managed by the TPM and used to
securely store the integrity measurements.

TCB (Trusted Computing Base)

Coupling of TPM, critical software and security-oriented
services.

TCG (Trusted Computing Group)

Not-for-profit group that released the specifications of TC
and manages their maintenance.

TP (Trusted Platform)

Computing system composed by a TPM and software
modules implementing TC-oriented features.

TPM (Trusted Platform Module)

Low-cost cryptographic chip used as basis for TC.

RA (Remote Attestation)

Act of reporting the integrity measurements to an external
entity.

RoT (Root of Trust)
Hardware components that must be trusted since their mis-
behaviour cannot be detected.

RTM (Root of Trust for Measurement)
Takes trustworthy integrity measurements that describe the
system.

Trusted-Computing Technologies for the Protection of Critical Information Systems 457

RTR (Root of Trust for Reporting)

Reports the integrity measurements to an external entity.

RTS (Root of Trust for Storage)

Securely stores critical data.

SRK (Storage Root Key)

Special RSA key that protects the other keys used for
cryptographic functions.

Author Biographies

Antonio Lioy received a MSc (1982) in electronic engineering
“summa cum laude” and a PhD (1987) in computer engineering,
both from the Politecnico di Torino. He is Full Professor at the
Politecnico di Torino, where he leads the TORSEC research group
active in the area of information systems security. His research
interests are in the fields of network security, PKI, and policy-
based system protection.

Gianluca Ramunno is a researcher in the security group of
Politecnico di Torino, where he received his MSc (2000) in
electronic engineering and PhD (2004) in computer engineering.
His initial research interests were in the fields of digital signature,
e-documents, and time-stamping, where he performed joint
activity within ETSI. Since 2006 he has been investigating the
field of Trusted Computing, leading the Politecnico di Torino
activities in this area within the EU FP6 project OpenTC.

Davide Vernizzi received a MSc (2005) in computer engineering
jointly from the École Nationale Supérieure d'Informatique et de
Mathématiques Appliquées of Grenoble and Politecnico di Torino.
He is currently involved in his PhD in computer engineering at
Politecnico di Torino. His research interests are mainly focused on
Trusted Computing, trusted networks and privacy-related issues.
Since 2006 he has been involved in the EU FP6 project OpenTC.

