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Abstract: Information systems controlling critical 
infrastructures are vital elements of our modern society. 
Purely software-based protection techniques have 
demonstrated limits in fending off attacks and providing 
assurance of correct configuration. Trusted computing 
techniques promise to improve over this situation by using 
hardware-based security solutions. This paper introduces 
the foundations of trusted computing and discusses how it 
can be usefully applied to the protection of critical 
information systems. 
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1 Introduction 

Trusted Computing (TC) technologies have historically 
been proposed by the TCG (Trusted Computing Group) to 
protect personal computers from those software attacks that 
cannot be countered by purely software solutions. However 
these techniques are now mature enough to spread out to 
both bigger and smaller systems. Trusted desktop 
environments are already available and easy to setup. 
Trusted computing servers and embedded systems are just 
around the corner, while proof-of-concept trusted 
environments for mobile devices have been demonstrated 
and are just waiting for the production of the appropriate 
hardware anchor (MTM, Mobile Trusted Module). 

TC technologies are not easily understood and to many 
people they immediately evoke the “Big Brother” phantom, 
mainly due to their initial association with controversial 
projects from operating system vendors (to lock the owner 
into using only certified and licensed software components) 
and from providers of multimedia content (to avoid 
copyright breaches). However, TC is nowadays increasingly 
being associated with secure open environments, also 
thanks to pioneer work performed by various projects 
around the world, such as OpenTC [1], co-funded by the 
European Commission. 

On the other hand, we have an increasing number of vital 
control systems (such as electric power distribution, railway 

traffic, and water supply) that heavily and almost 
exclusively rely on computer-based infrastructures for their 
correct operation. In the following we will refer to these 
infrastructures with the term “Critical Information Systems” 
(CIS) because their proper behaviour in handling 
information is critical for the operation of some very 
important system. 

This paper briefly describes the foundations of TC and 
shows how they can help in creating more secure and 
trustworthy CIS. 

2 Critical Information Systems (CIS) 

CIS are typically characterized by being very highly 
distributed systems, because the underlying controlled 
system (e.g. power distribution, railway traffic) is highly 
distributed itself on a geographic scale (Figure 1). 

In turn this bears an important consequence: it is nearly 
impossible to control physical access to all its components 
and to the communication channels that must therefore be 

 

Figure 1: Typical CIS architecture 
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very trustworthy. In other words, we must consider the 
likelihood that someone is manipulating the hardware, 
software, or communication links of the various distributed 
components. This likelihood is larger than in normal 
networked systems (e.g. corporate networks) because nodes 
are typically located outside the company’s premises and 
hosted in shelters easily violated. For example, think of the 
small boxes containing control equipment alongside railway 
tracks or attached to electrical power lines. 

Furthermore, CIS are usually composed by nodes of many 
types: for instance sensors that belong to a wireless sensor 
network (WSN) can be used to read data from the physical 
environment, while servers based on general purpose 
hardware collect and analyse those data. Because of the 
heterogeneous nature of the control networks, different 
protection mechanisms must be applied according to the 
type of the node. 

An additional problem is posed by the fact that quite 
often CIS are designed, developed, and deployed by a 
company (the system developer), owned by a different one 
(the service provider), and finally maintained by yet another 
company (the maintainer) on a contract with one of the first 
two. When a problem occurs and it leads to an accident, it is 
very important to be able to track the source of the problem: 
is it due to a design mistake? or to a development bug? or to 
an incorrect maintenance procedure? The answer has 
influence over economical matters (costs for fixing the 
problem, penalties to be paid) and may be also over legal 
ones, in the case of damage to a third-party. 

Even if no damage is produced, it is nonetheless 
important to be able to quickly identify problems with 
components of a CIS, being them produced incidentally or 
by a deliberate act. For example, in real systems many 
problems are caused by mistakes made by maintainers when 
upgrading or replacing hardware or software components. 

Any technical solution that can help in thwarting attacks 
and detecting mistakes and breaches is of interest, but 
nowadays the solutions commonly adopted – such as 
firewall, VPN, and IDS – heavily rely on correct software 
configuration of all the nodes. Unfortunately this cannot be 
guaranteed in a highly distributed and physically insecure 
system as a CIS. Therefore better techniques should be 
adopted not only to protect the system against attacks and 
errors but also to provide assurance that each node is 
configured and operating as expected. This is exactly one of 
the possible applications of the TC paradigm, which is 
introduced in the next section. 

3 Trusted Computing principles 

In order to protect computer systems and networks from 
attacks we rely on software tools in the form of security 
applications (e.g. digital signature libraries), kernel 
modules (e.g. IPsec) or firmware, as in the case of firewall 
appliances. However software can be manipulated either 
locally by privileged and un-privileged users, or remotely 
via network connections that exploit known vulnerabilities 
or insecure configurations (e.g. accepting 
unknown/unsigned Active-X components in your browser). 
It is therefore clear that it is nearly impossible to protect a 

computer system from software attacks while relying purely 
on software defences. 

To progress beyond this state, the Trusted Computing 
Group (TCG)1, a not-for-profit group of ICT industry 
players, developed a set of specifications to create a 
computer system with enhanced security named “trusted 
platform”. 

A trusted platform is based on two key components: 
protected capabilities and shielded memory locations. A 
protected capability is a basic operation (performed with an 
appropriate mixture of hardware and firmware) that is vital 
to trust the whole TCG subsystem. In turn capabilities rely 
on shielded memory locations, special regions where is safe 
to store and operate on sensitive data. 

From the functional perspective, a trusted platform 
provides three important features rarely found in other 
systems: secure storage, integrity measurement and 
reporting. The integrity of the platform is defined as a set of 
metrics that identify the software components (e.g. 
operating system, applications and their configurations) 
through the use of fingerprints that act as unique identifiers 
for each component. Considered as a whole, the integrity 
measures represent the configuration of the platform. A 
trusted platform must be able to measure its own integrity, 
locally store the related measurements and report these 
values to remote entities. In order to trust these operations, 
the TCG defines three so-called “roots of trust”, 
components that must be trusted because their misbehaviour 
can not be detected: 

• the Root of Trust for Measurements (RTM) that 
implements an engine capable of performing the 
integrity measurements; 

• the Root of Trust for Storage (RTS) that securely holds 
integrity measures and protect data and cryptographic 
keys used by the trusted platform and held in external 
storages; 

• the Root of Trust for Reporting (RTR) capable of 
reliably reporting to external entities the measures held 
by the RTS. 

The RTM can be implemented by a measurement engine 
(i.e. the CPU) and code. The latter can be the first software 
module executed when a computer system is switched on 
(i.e. a small portion of the BIOS firmware) or directly the 
hardware itself when using processors of the latest 
generation. The measurement code, which must be 
trustworthy, is called Core RTM (CRTM). 

The central component of a TCG trusted platform is the 
Trusted Platform Module (TPM) [2]. This is a low cost chip 
capable to perform cryptographic operations, securely 
maintain the integrity measures and report them. Given its 
functionalities, it is used to implement RTS and RTR, but it 
can also be used by the operating system and applications 
for cryptographic operations although its performance is 
quite low. 

The TPM is equipped with two special RSA keys, the 
Endorsement Key (EK) and the Storage Root Key (SRK). 
The EK is part of the RTR and it is a unique (i.e. each TPM 
has a different EK) and “non-migratable” key created by the 

                                                        
1 https://www.trustedcomputinggroup.org 
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manufacturer of the TPM and that never leaves this 
component. Furthermore the specification requires that a 
certificate must be provided to guarantee that the key 
belongs to a genuine TPM. The SRK is part of the RTS and 
it is a “non-migratable” key that protects the other keys 
used for cryptographic functions2 and stored outside the 
TPM. Also SRK never leaves the TPM and it is used to 
build a key hierarchy. The integrity measures are held into 
the Platform Configuration Registers (PCR). These are 
special registers within the TPM acting as accumulators: 
when the value of a register is updated, the new value 
depends both on the new measure and on the old value to 
guarantee that once initialized it is not possible to fake the 
value of a PCR. 

The action of reporting the integrity of the platform is 
called Remote Attestation. A remote attestation is requested 
by a remote entity that wants evidence about the 
configuration of the platform. The TPM then makes a 
digital signature over the values of a subset of PCRs to 
prove to the remote entity the integrity and authenticity of 
the platform configuration. For privacy reasons, the EK 
cannot be used to make the digital signature. Instead, to 
perform the remote attestation the TPM uses an Attestation 
Identity Key (AIK), which is an “alias” for the EK. The 
AIK is a “non-migratable” RSA key created by the TPM 
whose private part is never released unencrypted outside the 
chip; this guarantees that the AIK cannot be used by anyone 
except the TPM itself. 

In order to use the AIK for authenticating the attestation 
data (i.e. the integrity measures) it is necessary to obtain a 
certificate proving that the key was actually generated by a 
genuine TPM and it is managed in a correct way. Such 
certificates are issued by a special certification authority 
called Privacy CA (PCA). Before creating the certificate, 
the PCA must verify the genuineness of the TPM. This 
verification is done through the EK certificate. Many AIKs 

                                                        
2 In order to minimize attacks, the SRK is never used for any cryptographic 

function but only to protect other keys. 

can be created and, to prevent the traceability of the 
platform operations, ideally a different AIK should be used 
for interacting with each different remote attester. 

By using trusted computing it is possible to protect data 
via asymmetric encryption in a way that only the platform’s 
TPM can access them: this operation is called binding. It is 
however possible to migrate keys and data to another 
platform, with a controlled procedure, if they were created 
as “migratable”. 

The TPM also offers a stronger capability to protect data: 
sealing. When the user seals some data, he must specify an 
“unsealing configuration”. The TPM assures that sealed 
data can be only be accessed if the platform is in the 
“unsealing configuration” that was specified at the sealing 
time. 

The TPM is a passive chip disabled at factory and only 
the owner of a computer equipped with a TPM may choose 
to activate this chip. Even when activated, the TPM cannot 
be remotely controlled by third entities: every operation 
must be explicitly requested by software running locally and 
the possible disclosure of local data or the authorisation to 
perform the operations depend on the software 
implementation. 

In the TCG architecture, the owner of the platform plays 
a central role because the TPM requires authorisation from 
the owner for all the most critical operations. Furthermore, 
the owner can decide at any time to deactivate the TPM, 
hence disabling the trusted computing features. The identity 
of the owner largely depends on the scenario where trusted 
computing is applied: in a corporate environment, the 
owner is usually the administrator of the IT department, 
while in a personal scenario normally the end-user is also 
the owner of the platform. 

A Trusted Platform (TP) is a computing system which 
exploits the features offered by the TPM and the Core RTM 
to build advanced security properties. Usually a Trusted 
Platform is composed of different layers (Figure 2): 

• the Trusted Computing Base (TCB) is the lower layer 
that is made up by the TPM, optionally a virtualization 
engine, the driver of the hardware components, some 
software service needed to manage the security features 
and a software layer (TSS, the TCG Software Stack) that 
allows the interaction with the TPM. 

• the trusted applications are in charge of performing 
critical operations. These applications take advantage of 
the security services offered by the TCB (for instance, by 
using the sealing to protect important data such as the 
cryptographic keys). 

• the untrusted applications are common applications 
whose malfunctioning is not harmful for the system. For 
these applications there is no need to provide strong 
security features. 

Run-time isolation between software modules with 
different security requirement (i.e. isolating trusted from 
untrusted applications) is an interesting complementary 
requirement for a trusted platform. Given that memory 
areas of different modules are isolated and inter-module 
communication can occur only under well specified control 
flow policies, then if a specific module of the system is 

 
 

Figure 2: Typical architecture for Trusted Platforms 
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compromised (e.g. due to a bug or a virus), the other 
modules that are effectively isolated from that one are not 
affected at all. Today virtualization is an emerging 
technology for PC class platforms to achieve run-time 
isolation and hence is a perfect partner for a TPM-based 
trusted platform. 

The current TCG specifications essentially focus on 
protecting a platform against software attacks. The AMD 
Virtualization (AMD-V)3 [3] and the Intel Trusted 
Execution Technology (TXT)4 [4] initiatives, besides 
providing hardware assistance for virtualization, increase 
the robustness against software attacks and the latter also 
starts dealing with some basic hardware attacks. In order to 
protect the platforms also from physical attacks, memory 
curtaining and secure input/output should be provided: 
memory curtaining extends memory protection in a way 
that sensitive areas are fully isolated while secure 
input/output protects communication paths (such as the 
buses and input/output channels) among the various 
components of a computer system. Intel TXT focuses only 
on some so called “open box” attacks, by protecting the 
slow buses and by guaranteeing the integrity verification of 
the main hardware components on the platform. 

4 The Open Trusted Computing Project 

OpenTC5 is a FP6 EC co-funded project that applied TC 
techniques to the creation of an open and secure computing 
environment by coupling them with advanced virtualization 
techniques. In this way it is possible to create on the same 
computer different execution environments mutually 

                                                        
3 http://www.amd.com/virtualization 
4 http://www.intel.com/technology/security/ 
5 http://www.opentc.net 

protected and with different security properties. The overall 
architecture of the OpenTC environment is shown in 
Figure 3. 

OpenTC uses virtualization layers – also called Virtual 
Machine Monitors (VMM) or hypervisors – and supports 
two different implementations: Xen [5] and L4/Fiasco [6]. 
This layer hosts compartments, also called virtual machines 
(VM), domains or tasks, depending on the VMM being 
used. Some domains host trust services that are available to 
authorised user compartments. Various system components 
make use of TPM capabilities, e.g. in order to measure other 
components they depend on or to prove the system integrity 
to remote challengers. Each VM can host an open or 
proprietary operating environment (e.g. Linux or Windows) 
or just a minimal library-based execution support for a 
single application. 

The viability of the OpenTC approach has been 
demonstrated by creating three proof-of-concept prototypes, 
the so-called PET, CC@H and VDC ones, that are publicly 
available at the project’s web site. 

The PET (for “Private Electronic Transactions”) scenario 
[7] aims to improve the trustworthiness of interactions with 
remote servers. Transactions are simply performed by 
accessing a web server through a standard web browser 
running in a dedicated trusted compartment. The server is 
assumed to host web pages related to a critical financial 
service, such as Internet banking or another e-commerce 
service. The communication setup between the browser 
compartment and the web server is extended by a protocol 
for mutual remote attestation tunnelled through an 
SSL/TLS channel. During the attestation phase, each side 
assesses the trustworthiness of the other. If this assessment 
is negative on either side, the SSL/TLS tunnel is closed, 
preventing further end-to-end communication. If the 

 

Figure 3: The OpenTC architecture. 
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assessment is positive, end-to-end communication between 
browser and server is enabled via standard HTTPS 
tunnelled over SSL/TLS. In this way the user is reassured 
about having connected to the genuine server of its business 
provider and about its integrity, and the provider knows that 
the user has connected by using a specific browser and that 
the hosting environment (i.e. operating system and drivers) 
has not been tampered with, for example by inserting a key-
logger. 

The CC@H (for “Corporate Computing at Home”) 
scenario [8, 9] demonstrates the usage of the OpenTC 
solution to run simultaneously on the same computer 
different non-interfering applications. It reflects the 
situation where employers tolerate, within reasonable limits, 
the utilization of corporate equipment (in particular 
notebooks) for private purposes but want assurance that the 
compartment dedicated to corporate applications is not 
manipulated by the user. In turn the user has a dedicated 
compartment for his personal matters, included free Internet 
surfing which, on the contrary, is not allowed from the 
corporate compartment. The CC@H scenario is based on 
the following main functional components: 

• boot-loaders capable of producing cryptographic digests 
for lists of partitions and arbitrary files that are logged 
into PCRs of the TPM prior to passing on control of the 
execution flow to the virtual machine monitor (VMM) 
or kernel it has loaded into memory; 

• virtualization layers with virtual machine loaders that 
calculate and log cryptographic digests for virtual 
machines prior to launching them; 

• a graphical user interface enabling the user to launch, 
stop and switch between different compartments with a 
simple mouse click; 

• a virtual network device for forwarding network packets 
from and to virtual machine domains; 

• support for binding the release of keys for encrypted 
files and partitions to defined platform integrity metrics; 

• a trusted channel built upon TLS extensions [10] to let 
the Corporation remotely attest platform’s TCB and the 
Corporate Compartment. 

The last scenario called VDC (for “Virtual Data Centre”) 
extends the concepts of the CC@H scenario to cover the 
data centre’s use cases. In this context, two main 
stakeholders come into play: data centre customers and 
administrators. 

Data centre customers want to run applications in a 
remote execution environment while having guarantees that 
they are properly isolated. Additionally, customers require 
management support to start, stop and reconfigure their 
execution environments and allocate (virtual) resources. 
They also may desire to split security critical and non-
critical parts between different virtual domains, with 
dedicated gateways between them. Finally they may want to 
provide services to external users (e.g. partners of data 
centre customers) and therefore it must be possible to leave 
open access to part of the resources allocated while 
protecting the rest of the system. 

On another hand, data centre administrators need to have 
an overview of how many Trusted Virtual Domains (TVD) 
[11] are hosted at the infrastructure, which nodes they are 
using, and which free resources could be allocated to new 
and existing customers. Moreover each customer must (be 
obliged to) adhere to the policy defined by contract without 
interfering with other customers’ policies. 

Therefore the goal of the architecture for the Virtual Data 
Centre is to provide an infrastructure capable of running 
different virtual machines provided by customers (possibly 
spreading them over many different physical hardware) 
while offering separation mechanisms for shared network 
and storage. The scenario also requires a management 
infrastructure capable of automated deployment of virtual 
resources like TVD networks [12] and automated 
enforcement of data centre’s and customers’ security 
policies [13]. Finally management consoles with improved 
security properties are required for administering multiple 
disjoint domains in parallel. 

5 Using TC to protect CIS 

CIS security threats can be grouped into the following three 
main categories. 

T1 (malware). CIS are composed by different software 
modules running over a distributed computing system. This 
software can contain viruses, trojans or spyware as well as 
security holes due to bad programming. Furthermore, as a 
CIS is typically an heterogeneous system developed by 
different parties and continuously evolving through years, 
these types of problem are likely to happen often enough to 
consider this menace as quite a serious one. 

T2 (insiders). CIS are large systems administered by 
many different subjects over a wide area. In this context it is 
not unlikely to find some unfaithful operator to damage the 
CIS or even the underlying physical system. These subjects 
know enough about the system to be considered a real and 
powerful threat. 

T3 (external attackers). As nowadays common in every 
networked system, there are attackers that try to gain access 
to the computing systems from outside. Since CIS often 
control vital physical systems (e.g. water distribution) in 
addition to classical motivations (such as fame and profit) 
terrorism must also be taken into account. 

In addition to these threat categories, it is also possible to 
group the possible attacks into two main categories 
according to their target: the communications or the 
platforms. 

Network attacks target the communication among the 
nodes of the CIS. For instance, such attacks can lead to 
disclosure of data read by the sensors or modification of the 
control parameters sent to the physical operating 
equipment, easily provoking the misbehaviour of the CIS 
system. Moreover, due to poor network configuration, the 
attackers could sniff passwords if they are transmitted in 
clear on the network, or monitor the traffic to gain 
information about the system activity. 

Platform attacks are carried out directly against the nodes 
of the CIS. Local vulnerabilities – such as poor password 
choice, missing security patches or bad configuration of the 
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nodes – can be used to gain access to the system or to 
perform a privilege escalation. 

TC can help to provide protection against these threats 
and attacks and also benefit the general design and 
operations of a CIS in several ways. 

5.1 Node state verification 

In a highly distributed and physically unprotected system it 
is of utmost importance to know if the software image of 
each node has been tampered with. The remote attestation 
capability of TC can be used to request and reliably report 
the software state of a remote node. 

This is especially important when several players concur 
to the design, management, operation, and maintenance of a 
CIS. Software modules can be unintentionally modified due 
to human errors, or deliberately modified due to attacks, but 
both cases will be quickly detected when performing a 
remote attestation. 

Furthermore, TC may force operators to keep up to date 
the software running on their nodes: network access could 
be restricted only to those nodes that have installed relevant 
security patches, while the not updated ones may be either 
isolated or allowed only to access a limited network area 
just for urgent administrative operations (such as security 
updates). 

Verification could also take place in a different way: a 
central management facility could poll the various nodes by 
opening network connections towards them just to check via 
remote attestation the software status of the nodes. In this 
way it would be very easy to detect mis-configured elements 
and promptly reconfigure or isolate them, leading to a 
powerful distributed Intrusion Detection System (IDS). 

5.2 Trusted authentication 

Proper authentication is the first step towards achieving 
effective access control [16]. Authentication is usually 
enforced by assigning login accounts to authorized users 
who can then access the network using their passwords. 

However, this is not a strong security control: users easily 
fall victim of social engineering attacks or their passwords 
are stolen by malware such as key loggers. Furthermore, it 
is also possible that the remote system used for 
authentication is a rogue one. 

TC can help by protecting credentials used for 
authentication and preventing the possibility that a rogue 
system is used for authenticating. This is done by using 
sealing to store the access credentials (e.g. username and 
password) and by verifying the platform integrity prior of 
providing access to the credentials. In this way an 
individual can unseal the credentials and gain access to the 
CIS only if he both provides the correct passphrase and uses 
a correctly configured and un-tampered system. In this 
scenario, it is impossible for an attacker to use a CIS user 
itself as attack vector. 

If a stronger authentication mechanism is needed – such 
as smart card based login [15] – the TPM itself can be used 
as a smart card to store sensitive data (e.g. the private key of 
the user), with a higher security level because the key can be 
used only by a specific program while a stolen smart card 
can be used on any system and with any application. 

5.3 Trusted log 

TC opens also the door to reliable logging, where log files 
contain not only a list of events but also a trusted trace of 
the component that generated the event and the system state 
when the event was generated. 

This is particularly useful to enforce a non-repudiation 
policy, to support evidence creation for computer forensics, 
or to detect false logging events created by an attacker to 
mess-up the log. 

Additionally the log file could be manipulated only by 
trusted applications if it was sealed against them, so that no 
direct editing (for insertion or cancellation) would be 
possible, for example by a mis-behaving administrator. 

5.4 Data protection 

In general TC helps to protect sensitive data by hardware 
means. In particular, sealing protects critical data from 
access by unauthorized software because access can be 
bound to a well-defined system configuration. 

This feature allows the implementation of fine-grained 
access control schemes that can prevent agents from 
accessing data they are not authorized for. 

Moreover, it blocks the access to those data in the case of 
an attack to the node. Again, in a large distributed scenario, 
where it is impossible to guarantee the physical security of 
each node, this is an essential feature against unauthorized 
software manipulation of the nodes. 

This also becomes very important when several 
applications with different trust level are running on the 
same node and maybe these applications have been 
developed by providers with different duties. In this way we 
can easily implement the well-known concept of “separation 
of duties”: even if a module can by-pass the access control 
mechanisms of the operating system and directly access the 
data source, it will be unable to operate on it because the 
TPM and/or security services running on the system will not 
release to the module the required cryptographic 
credentials. 

5.5 Trusted sensor networks 

TC can protect also the sensors used to collect data can in a 
CIS. While the concept of trusted WSN is quite novel and 
there is not a specification for TC-compliant hardware for 
sensors, it is already possible to identify fields where TC 
can be applied thus enhancing the overall protection. It is 
important to protect both the sensors’ integrity and the 
communication between the sensors and the other nodes. 

The communication can be protected using standard 
cryptography. Due to the limited computing resources and 
the low cost of most sensors, it is likely that a simple 
protocol based on symmetric cryptography is used. In this 
context TC will enhance the security by providing means 
for protecting the secret keys shared between the sensors 
and the controlling nodes. Where it is possible, the sensors 
should be equipped with a hardware component that will 
ensure the protection of the keys. If this is not possible due 
to limits to the cost of the sensor, the key could be stored on 
the controlling node and TC will guarantee that 
communication not protected with such key will be rejected, 
leading to dropping packets that were possibly sniffed or 
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crafted by an attacker. On the other side, if the design 
allows it, the sensor can be provided with TC-oriented 
hardware components (such as Roots of Trust) that will 
enable secure storage and integrity measurement and 
reporting. 

Additionally, thanks to the special architecture of the 
sensors, it is possible to implement promising security 
features. For instance, recently direct support for the Java 
programming language has been introduced on many 
sensors and some of them are capable of running a tiny Java 
Virtual Machine (JVM) as operating system. The JVM 
allows a fine granularity control (i.e. it can work at class 
granularity) which can be used as foundation to develop a 
fine-grained system. Such system must be capable of 
enforcing policy on the communication between the classes. 
This result can be achieved by instrumenting the JVM to 
selectively block or allow access among the different Java 
classes instantiated according to the policy. For instance it 
is possible to separate the security-relevant part of an 
application (e.g. the code that authenticates the data to 
send) from the rest (e.g. the user interface). The access 
control system will be capable of granting access to the 
secure code if a particular policy applies (e.g. if all the 
communications happen in a secure form) and to revoke 
such access otherwise. 

Another important benefit that TC would bring to the 
CIS involves the usage of standard systems [14]. CIS are 
now in their third evolution phase. After the first monolithic 
systems composed by mainframes, they evolved to 
distributed architectures where multiple stations were 
connected through LAN and shared information in real 
time. Nowadays their architecture is based on the usage of 
open system architectures rather than a vendor-controlled 
proprietary environment and utilizes open standards and 
protocols thus distributing functionality across a WAN 
rather than a LAN. In this scenario the usage of standard 
specifications as the ones proposed by the TCG would help 
to interconnect in a trusted and standard way the different 
nodes of the system. Moreover, the usage of virtualization 
separates the critical parts of the system from the others, 
allowing use of third-party components and Commercial-
Off-The-Shelf (COTS) software. 

5.6 Cost and performance issues 

Designers and managers of CIS should not be scared by the 
cost and overhead introduced by TC. 

Cost is usually not an issue because – by design – the 
TPM has been conceived as a low-cost item that nowadays 
is found both as a separate component and as an embedded 
element of chipsets (for desktops, servers, and 
microcontrollers). 

When an extremely low cost for a node is necessary (such 
as in very small wireless sensor nodes) then a different 
architecture should be used: the TC features should be 
available at a higher level hierarchical node that controls 
the sensors and reports only its own integrity. The dialog 
between the controller and the sensors can be protected with 
ad-hoc techniques [17, 18, 19]. With this architecture, trust 
based on TC is limited to the core of the CIS while the leafs 
should use other non-TC strategies for building trust, such 

as duplicate measures to thwart attacks against individual 
sensors. 

Cryptographic performance of TPM is low because it is 
not a general-purpose cryptographic accelerator but just a 
trust anchor. It implements the SHA and RSA algorithms, 
as well as some limited secure storage. For desktops and 
servers this is not a problem as they have plenty of 
computing power that can be used to perform the massive 
cryptographic operations needed to protect data and 
communications. However for small sensor nodes TPM can 
become a bottleneck if frequently used. In general, CIS 
designers should be aware of the limited cryptographic 
power of TPM and therefore require remote attestation only 
when really needed. 

When it comes to trusted software environments built on 
top of TPM, in our experience the XEN-based environment 
is powerful but demanding, while the L4/Fiasco set-up is 
very lightweight and therefore suitable also for nodes with 
limited computational resources. 

If a virtualized trusted environment is used, inside a 
partition we can execute a full operating system with all its 
capabilities (e.g. Suse Linux), a stripped-down OS (such as 
DSL, Damn Small Linux) with only the required drivers 
and capabilities, or just a mini-execution environment 
providing just the required libraries for small embedded 
single task applications. 

Finally, in case multiple compartments are not needed, 
the TC paradigm can be directly built on top of the 
hardware, without any virtualization layer, hence further 
reducing its footprint. 

6 Conclusions 

While some technical problems are still to be solved before 
large-scale adoption of TC is a reality, we nonetheless think 
that it is ready to become a major technology of the current 
IT scenario. This is true not only for general purpose ICT 
systems but especially for critical information systems 
where the TC advantages in terms of protection and 
assurance far outweigh its increased design and 
management complexity. 
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Trusted Computing Glossary 

AIK (Attestation Identity Key) 

Special RSA key used by the TPM for an operation of 
remote attestation. 

DAA (Direct Anonymous Attestation) 
Cryptographic privacy-friendly protocol used in TC to 
provide integrity evidence without disclosing the user 
identity. 

EK (Endorsement Key) 

Special RSA key used to asses the genuineness of a TPM. 

MTM ( Mobile Trusted Module) 

Security element based on TPM specifications and used as 
basis for TC on embedded and mobile platforms. 

PCA (Privacy Certificate Authority) 

Special certification authority that verifies the genuineness 
of a TPM and issues a certificate for an AIK belonging to 
that TPM. 

PCRs (Platform Configuration Registers) 

Special memory regions managed by the TPM and used to 
securely store the integrity measurements. 

TCB (Trusted Computing Base) 

Coupling of TPM, critical software and security-oriented 
services. 

TCG (Trusted Computing Group) 

Not-for-profit group that released the specifications of TC 
and manages their maintenance. 

TP (Trusted Platform) 

Computing system composed by a TPM and software 
modules implementing TC-oriented features. 

TPM (Trusted Platform Module) 

Low-cost cryptographic chip used as basis for TC. 

RA (Remote Attestation) 

Act of reporting the integrity measurements to an external 
entity. 

RoT (Root of Trust) 
Hardware components that must be trusted since their mis-
behaviour cannot be detected. 

RTM (Root of Trust for Measurement) 
Takes trustworthy integrity measurements that describe the 
system. 
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RTR (Root of Trust for Reporting) 

Reports the integrity measurements to an external entity. 

RTS (Root of Trust for Storage) 

Securely stores critical data. 

SRK (Storage Root Key) 

Special RSA key that protects the other keys used for 
cryptographic functions. 

Author Biographies 

Antonio Lioy received a MSc (1982) in electronic engineering 
“summa cum laude” and a PhD (1987) in computer engineering, 
both from the Politecnico di Torino. He is Full Professor at the 
Politecnico di Torino, where he leads the TORSEC research group 
active in the area of information systems security. His research 
interests are in the fields of network security, PKI, and policy-
based system protection. 

Gianluca Ramunno is a researcher in the security group of 
Politecnico di Torino, where he received his MSc (2000) in 
electronic engineering and PhD (2004) in computer engineering. 
His initial research interests were in the fields of digital signature, 
e-documents, and time-stamping, where he performed joint 
activity within ETSI. Since 2006 he has been investigating the 
field of Trusted Computing, leading the Politecnico di Torino 
activities in this area within the EU FP6 project OpenTC. 

Davide Vernizzi received a MSc (2005) in computer engineering 
jointly from the École Nationale Supérieure d'Informatique et de 
Mathématiques Appliquées of Grenoble and Politecnico di Torino. 
He is currently involved in his PhD in computer engineering at 
Politecnico di Torino. His research interests are mainly focused on 
Trusted Computing, trusted networks and privacy-related issues. 
Since 2006 he has been involved in the EU FP6 project OpenTC.

 


