This is the authors' version of the chapter published in the book "Cyber Security and Privacy",
F.Cleary and M.Felici (editors), Springer, November 2015, pp. 116-127, ISBN 978-3-319-25360-2
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-25360-2_10

The trust problem in modern network
infrastructures

Ludovic Jacquin (*), Antonio Lioy (+4), Diego R. Lopez (%),
Adrian L. Shaw (*), and Tao Su (+)

(*) Hewlett-Packard Laboratories (Bristol, UK)
(4+) Politecnico di Torino (Torino, Italy)
(%) Teléfonica I+D (Madrid, Spain)

Abstract. SDN and NFV are modern techniques to implement net-
working infrastructures and can be used also to implement other ad-
vanced functionalities, such as the protection architecture designed by
the SECURED project. This paper discusses a couple of techniques —
trustworthy network infrastructure monitoring and remote attestation
of virtual machines — useful towards a trusted and secure usage of SDN
and NFV.

Keywords: SDN, NFV, remote attestation, trust, security.

1 Introduction

Network infrastructure is quickly evolving from a hardware-based switch-only
layer to a full-fledged computational system able to perform several tasks, switch-
ing packets being just one, although a very important one. This evolution is
permitted by the advent of two new architectures, namely SDN and NFV.

SDN (Software-Defined Networking) is one particular approach to provide
virtualised traffic routing and unified network flow management across hardware
and software-based networking components. The principal design of SDN is to
virtualise the existing control and data planes by moving the control part away
from all network elements to a centralised node in the network, known as the
SDN controller.

NFV (Network Functions Virtualisation) proposes to virtualise several classes
of network node functions into generic building-blocks (to be run as virtual ma-
chines on commodity hardware) to be connected for creating various network
services. NFV typically exploits SDN to create custom overlay networks con-
necting the various network functions and in turn SDN can use NFV to host its
controllers and applications.

SDN and NFV can be used also for non network-related functions: an example
is provided by the SECURED project [1] which uses SDN to create a custom
network path for each user to interconnect its network-hosted security controls,
that may be executed in a NFV infrastructure. Purpose of this project is to create
a user-oriented security environment, protecting the user’s traffic independent

antonio
Typewritten Text
This is the authors' version of the chapter published in the book "Cyber Security and Privacy",
F.Cleary and M.Felici (editors), Springer, November 2015, pp. 116-127, ISBN 978-3-319-25360-2
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-25360-2_10

antonio
Typewritten Text

antonio
Typewritten Text

http://dx.doi.org/10.1007/978-3-319-25360-2_10

The trust problem in modern network infrastructures 117

Legend:

—— data plane

—— control plane

--- monitoring plane SDN controller

SDN verifier

Fig. 1. A typical SDN topology, enhanced with a SDN verifier.

of the specific user device and network access point. As SDN and NFV are
critical elements for SECURED, it is investigating techniques to improve their
trustworthiness and security and a first analysis and proposal is reported here.

2 Trustworthy monitoring architecture for SDN

The usage of SDN introduces new network abstractions and high-level primi-
tives but this creates a trust gap for administrators as they cannot easily assess
the correctness of enforced device configurations. We present here a monitor-
ing architecture for SDN to bridge this semantic gap, with the additional goal
to be both trustworthy and automated, such that administrators only need to
act upon detection of faulty behaviour. The proposed monitoring architecture
introduces an out-of-band SDN wverifier, from the control plane perspective, to
automatically and continuously attest the enforced SDN rules by the network
elements.

2.1 Introducing the SDN verifier

In a typical SDN topology, network elements are both hardware- and software-
based, with a hierarchy of controllers to program them all. As we want to address
the security and trust concerns of this new layer, we define the following attacker
model:

1. an attacker can modify the software stack of a network element;
2. hardware attacks cannot be performed, in particular physical links are deemed
secure;

118 L.Jacquin, A.Lioy, D.Lopez, A.Shaw. T.Su

Applications

SDN Controller
I

Fig. 2. Logical overview of the proposed monitoring architecture

Management
SDN verifier

o
=
<
=
wn
R
=
=
B=|
=
=
=
=
(@)
~
q

3. the SDN controller is secure and trusted — whilst it is an important and
central element of SDN, the security of the controller is an orthogonal issue
to what is addressed here.

4. the SDN verifier is secure and trusted.

The introduction of the SDN verifier requires a new monitoring plane which
will be used to exchange attestation data from the network elements. A special
part of this monitoring plane is the connection between the verifier and the
controller(s): it is used by the verifier to retrieve the expected SDN configuration
of the network elements. With regards to the attacker model considered, we keep
the same assumption as the controller.

In the control hierarchy, the verifier remains in the same network as the
SDN controller and the network elements, as depicted in Fig. 2. We envision
that it would report to the management components, which in turn inform the
administrator and potentially SDN applications. The application has the logic
and knowledge of the network topology, to act on faulty behaviour automatically
if needed.

From a functional perspective, the SDN verifier focuses on re-establishing
trust in the network elements by attesting their software stack and the SDN
configuration they are currently enforcing at the dataplane. Since the main tasks
of the controller and network elements are to route the traffic through the dat-
aplane and do performance critical tasks, we choose to alleviate this pressure
by offloading the computational complexity to the SDN Verifier. Whilst the
verifier—controller interface is quite trivial as most implementation already sup-
port that through a web interface, the proposed monitoring architecture needs
an embedded monitor inside each network element.

2.2 Network element monitoring

The verifier relies on the attestation agent installed in each network element to
locally retrieve and package the monitoring data back to the verifier. Since a
software-only solution would be prone to a wide range of software attacks, our
design uses a trusted device inside the network element. This trusted device is
generally immutable and is used as a basis for trust, which is leveraged by the
verifier to attest the network element and its behaviour. The trusted device must
provide a hardware-based identity and enable the creation of a Core Root of Trust

The trust problem in modern network infrastructures 119

| I
| |
| |
| |
| |
l !
: SDN switch Monitoring :
: implementation agent :
| ©
! Trusted | |
: device :
1: Attestation measurements 4: OpenFlow rules inspection

2: Secure storage of measurements 5. Dynamic configuration measurements
3: SDN verifier challenge 6: SDN verifier response

Fig. 3. Network element component architecture target

for Reporting (CRTR), a component which measures the dynamic configurations
related to network flow rules that are currently enforced.

Hardware-based identity. The network element identity is primarily used
to derive a pair of public/private keys used to provide integrity and authentica-
tion of the monitoring data. For instance, the IEEE 802.1AR already provides
examples of facilitating secure device identity provisioning. The identity is pro-
visioned at installation time inside the trusted device with the corresponding
derived private key. This identity allows the SDN verifier to check the authen-
ticity of the attestation proof coming from the trusted device and to check the
integrity of the measurement reports. The methods of identity distribution and
management are not covered as part of this paper.

Measured Boot. One way of assessing the software state of a computer is
to measure every trusted piece of software before it is loaded during device start-
up. This is known as a measured boot. This is achieved by augmenting the boot
process of the machine to cryptographically measure executable software at load
time and securely report the result to a trusted device prior to transferring exe-
cution to the loaded software. The subsequent piece of measured software can in
turn load and measure more software. This process is repeated for each piece of
software loaded on the platform, creating what is commonly known as a chain of
trust. Since the trusted device keeps logs of all software executed on the platform,
it is able to report all the measurements of the configurations since early in the
boot process. Recursively, the measured boot relies on a small combination of
hardware and software that must be implicitly trusted to measure software run-
ning on the platform. This minimum combination constitutes the Core Root of
Trust for Measurement (CRTM). It is fundamental that the CRTM implements
a secure storage capability that cannot be tampered with by other software on
the platform, such that any potentially malicious code cannot erase or overwrite

120 L.Jacquin, A.Lioy, D.Lopez, A.Shaw. T.Su

logs that have already been reported and stored in the trusted device. As an
example, on a PC platform the CRTM has typically been composed of both the
BIOS and a Trusted Platform Module (TPM), both of which must be trusted
in order to provide secure and assurable storage of software measurements and
secrets.

Remote verification stage. Once all measurements have been reported by
each component to the trusted device, a verifier is able to then remotely query the
trusted device. The cryptographically signed response from the trusted device
should include the measurement log provided by the CRTM and all subsequent
measured pieces of software. The verifier can then compare the received logs with
well-known measurements corresponding to a measurement database of trusted
software components (and states). It is important to note that with a measured
boot approach, the verifier must attest each piece of software to verify that
nothing previously loaded was unknown or untrusted software. Thus, in order
to verify if the operating system is in a trusted state, all the logs of previously
executed software must be asserted as known and trusted software.

Attestation agent. Its main goal is to relay the incoming challenges and
outgoing responses between the verifier and the CRTR. It is not a trusted com-
ponent in the monitoring architecture since the verifier’s challenge is used by
the trusted device when creating the attestation proof. Any tampering of the
challenge or the response would be detected by the SDN verifier.

Core Root of Trust for Reporting (CRTR). The role of the CRTR
is to inspect the forwarding table state of the SDN switch implementation in
a network element and report it to the SDN verifier. The CRTR is eventually
loaded as part of the platform’s trusted computing base. Ideally, the CRTR
needs to be one-way isolated from the network element implementation. For
instance, the CRTR must be able to inspect the VL AN routing tables and system
configurations, but the rest of the switch system must not be able to interfere or
influence the CRTR functionality, The isolation of the CRTR is either enforced
using a hardware mechanism, or attested through a CRTM. The full combination
of the CRTR, the agent and the trusted device are illustrated in Fig. 3.

With the addition of the SDN Verifier and the embedded reporting mech-
anism inside the network elements, a software-defined network can be more
strongly attested for (A) correctness of firmware and software at the data plane,
and (B) correct enforcement of dynamic configurations, such as VLAN forward-
ing tables.

2.3 Prototype implementation

Let us now focus on the trade-offs done during the implementation of a hardware
switch prototype and show the equivalent implementation for a virtual SDN
switch, such as OvS [2].

For the prototype, we made two major technological choices: (i) we rely on
a TPM as the trusted device (and we use the well-known Trusted Computing
Group methods for the CRTM), and (ii) the monitoring agent uses SNMP to

The trust problem in modern network infrastructures 121

communicate with the SDN verifier. Both technologies present the main advan-
tage to be widely deployed world wide. The downside of the TPM is its per-
formance: in our hardware switch prototype, the remote attestation exchange
(over SNMP) takes around one second, where most of the latency comes from
the digital signature during the TPM Quote operation (which can take as long
as 600 ms).

In the meantime, we are evaluating three approaches for a software SDN
switch attestation. TPM remains our choice for the trusted device, especially
with the existing software environment around it, namely TrustedGRUB [3] and
IMA [4]. The main point we are investigating is the CRTR to introspect the
“vswitchd” context. We will evaluate three different approaches: (i) full kernel-
based integrity monitor, that routinely inspect the memory of the OvS process;
(ii) split integrity monitor, that relies on a small kernel module for the memory
introspection and moves the processing logic in a user—space agent; (iii) full
user—space monitor, if the monitor can access directly the OvS memory space.

3 NFV and virtual machine attestation

Any NFV service deployment requires the onboarding, activation and start-up
of a set of virtualised elements that will be run on a uniform infrastructure sup-
porting the virtualised execution environment (the NE'V Infrastructure, NFVI).
Furthermore, these elements have to be connected to other elements according
to a given network topology, that will be dynamically created by requesting it
to the Virtual Infrastructure Manager (VIM), which typically would create it by
means of SDN. In this environment it is obvious the need for applying proce-
dures to verify the integrity of the system (the whole NFV service deployment)
by the appropriate attestation of the NF'V architectural elements, including soft-
ware and firmware images and associated supporting security sub-systems that
will run to instantiate individual VNFs (Virtual Network Functions) and their
composition into a NFV service. Since these procedures will have to be exe-
cuted by the Management and Orchestration (MANO) stack in charge of the
service deployment they have to support remote attestation mechanisms and,
more specifically, they have to apply cryptographic techniques to verify system
integrity.

NFV remote attestation requires identifying the root(s) of trust, establishing
a chain of trust for the NFVI, the individual VNF's, and the MANO sub-systems,
and verification of the trust chain, so the MANO stack components can verifi-
ably establish a sufficient level of assurance in the different software elements
constituting the VNFs and the service(s) that use them. While exist standards
and best practices for attestation in physical environments (TPM, TCG, ...),
a detailed assessment of their applicability is needed due to the extensive use
of virtualisation techniques, the scale of VNF composition, and the requirement
to perform network topology attestation. The NFV Security Problem Statement
[5] describes secure boot and secure crash among key issues for guaranteeing a
secure NFV operation, while the NFV Security and Trust Guidance [6] directly

122 L.Jacquin, A.Lioy, D.Lopez, A.Shaw. T.Su

mentions attestation mechanisms. Several NFV use cases [7] and reported ex-
periments [8] describe situations in which VNFs are dynamically on-boarded,
updated or modified, and a proper verification of their correct provenance is an
essential step in these procedures.

The attestation steps may be specific to the level of assurance to be estab-
lished, which, in turn, depends on the nature of the particular network function,
the service it supports, and the different parties involved in its instantiation.
Furthermore, different local and remote procedures may apply depending on
whether the elements in the supporting infrastructure are trusted. To establish
a set of common NFV attestation technologies it will be necessary to address
the following aspects:

— define the required levels of assurance;

— identify the assumed capabilities in the NFVI (e.g. TPM, secure boot, ...);

— assign the operational procedures to be applied at each layer of the MANO
stack;

— specify how attestation requirements will be expressed in the different NFV
descriptors, for the NFVI, individual VNFs, and services;

— specify the information model to exchange attestation requests and data at
the reference points in the NFV architecture framework.

Among all these challenges, we currently focus on attestation of virtual machines
as it is a fundamental problem for NFV trustworthiness.

3.1 Virtual machine attestation

Attestation of physical computing platforms is possible in various ways. A very
common one is to to exploit the Trusted Platform Module (TPM), a special
chip available on most hardware platforms. It is used to provide secure storage,
integrity measurement, and reporting. The TPM offers secure storage in the
form of Platform Configuration Registers (PCRs) that can only be accessed with
specific commands. Integrity measurement consists of computing the digest of
target files and accumlating the values into the PCRs with a specific command
(extend).

The action of reporting the integrity of the platform is called Attestation and
is mostly useful in its Remote Attestation form, which is requested by a different
network entity that wants evidence about the current software status of the
attested platform. The TPM then makes a digital signature over the values of
a subset of PCRs to prove to the remote entity the integrity and authenticity
of the platform configuration. In this way, the evidence provided to other party
is reliable and authentic. It is bound with the hardware TPM, which cannot be
forged by others.

Attestation comprises three phases: measurement, attestation and verifica-
tion. Previous studies about attesting VMs mainly focus on the first two steps,
how to measure the system [4] [9], and how to properly attest the results [10] [11],
but few address the verification problem. Actually, most works do not provide

The trust problem in modern network infrastructures 123

information of how to verify the measurement properly. Binary-based attesta-
tion is the most popular solution, which extends the measurements into PCRs
residing inside the TPM. Subsequently, verifier compares these PCR binary val-
ues with golden ones. This approach can provide high security assurance, but
need complex management because the PCR values are order sensitive. Unlike
the booting process (where the components are loaded one after another in a
specific order), during normal usage the execution of software happens in ran-
dom order, so PCR values verification could easily fail even though integrity is
not compromised.

Attesting VMs is a difficult task as they do not have direct access to the
hardware and hence to the TPM, which is the critical component for attestation.
Even if direct access to the TPM could be provided, the number of PCRs would
be insufficient for the number of VMs normally activated on a single hardware
platform.

A first approach to solve this problem is to emulate the whole functionality of
a physical TPM by using a custom software module. In this way, this module can
be used to attest multiple VMs with just one hardware TPM. This is the vTPM
[10] approach (Fig. 4) where each VM has a client side TPM driver, which VMs
send their TPM commands to. A server side TPM driver is running in a special
VM on top of the hypervisor; this server-side driver collects the data from the
client-side driver, and sends them to the vI'PM manager. The vIPM manager
is in charge of creating vIPM instances and multiplexing requests from VMs to
their associated vIPM instances. Since the vIPM instance number is prepended
on the server side, a VM cannot forge packets and try to get access to another
vITPM instance not associated with itself. This solution has been implemented
in XEN [12].

vTPM Instanca
vTPM Instanca

k:
I
&

Aoplication

Aoplication

w TP M erIJ‘
LTTAY VM . M
Bl (B
TR D iva i Pl D rive

Hardware
TPM —— Reguest/Response Path

Fig. 4. The vIPM architecture [10].

124 L.Jacquin, A.Lioy, D.Lopez, A.Shaw. T.Su

Another work [11] addresses the scalability issue by extending the vIPM
model to reduce the complexity of software attestation. Since the traditional
periodic polling model does not scale well (each VM adds effort to the attestation
cost), the authors propose an event-based monitoring and pushing model. The
benefit of the pushing model is that it will eliminate the problem of Time-of-
Measure to Time-of-Report attacks and TPM reset attack (i.e. fast rebooting
the system after the malicious script execution, to reset TPM PCR values).

The architecture proposed by the authors is shown in Fig. 5. The client
TPM driver normally executes the TPM extend commands through the vIPM
manager into its own child state. Now the vIPM manager can repeat the same
extend operation into the parent state of the child state (which works like the
PCRs in the hardware TPM). One parent state may create multiple child states,
so that it can monitor multiple guest virtual machines at the same time. Every
time the parent state is modified, the vIPM manager notifies the users that
subscribe to it, thus achieving event-based attestation.

push new
measurements
———————
7 ™\ guest
measurement parent- vTPM Manager
verifier state TPM extend
X child-
"t | state 1
N TPM

VvTPM extend copy driver

e J

vTPM extend

hypervisor (type 1)

Fig. 5. Solution architecture in [11].

The obvious benefit for this solution is its scalability and the possibility to
eliminate the ToM-ToR and TPM reset attacks. It can easily support thousands
of VMs.

In general event-based monitoring is more convenient and feedback time can
be much faster. In a virtualised environment, the hypervisor can be modified to
support event-based monitoring. Following this idea, in [13] the authors propose
to verify VM integrity by an Integrity Verification Proxy (IVP) embedded in

The trust problem in modern network infrastructures 125

the hypervisor. They chose QEMU/KVM as the hypervisor to be modified. The
VMs running on top of KVM are in Debug Mode, so a debugging tool (e.g. gdb)
can be used to set watchpoints (e.g. locations in memory) that are triggered by
integrity-relevant operations such as Integrity Measurement Architecture (IMA)
operations. Once the watchpoint is triggered, the VM will be paused and no out-
going/incoming traffic is possible. Until the module finishes to assess whether the
new event violates an integrity criteria, the VM is not permitted to resume exe-
cution. This solution suffers a penalty due to executing the VMs in debug mode.
Applying the same technique in normal mode is currently an open challenge.

3.2 IMA-based attestation

To support remote attestation in virtualised environment, the supporting com-
ponent (SC) can be put in three different places (Fig. 6).

The first place is in the hosting system with a type II hypervisor.

The second option is to put it in a special VM (as done by vITPM). In this
case, since the hosting system is not monitored, only a type I hypervisor can
be used but neither the hypervisor nor the OS running in the VMs require
modification.

The third option is to embed the supporting component within the hypervisor
(either type I or type II) so that the supporting component can provide event-
based attestation, but the hypervisor needs modification.

SC

hypervisor (type Il) hypervisor

hypervisor
hosting OS s (type)

(1) (2) (3)

Fig. 6. Possible placement of the attestation supporting component.

We are currently exploring the first option: a remote attestation component
running inside the hosting system underlying a type II hypervisor. This relies
on the IMA measurements generated by the Linux kernel. It also requires a
database of executable digests to show what software is running in the VMs and
whether it is trusted or not. Since in SECURED the VM images are customised
and their initial state is known, the only files that need to be checked are the
configurations and the executable files loaded inside the VM.

The idea is to place one attestation proxy in the hosting system and use it to
retrieve the IMA measurements from the VMs running inside it (Fig. 7). Since

126 L.Jacquin, A.Lioy, D.Lopez, A.Shaw. T.Su

4 SECURED node h

VM1 VM2

IMA IMA
measurement measurement attestation

verifier
HYPERVISOR

IMA attestation
measurement proxy

N/
-)

Fig. 7. IMA-based attestation architecture.

IMA measures all the executables invoked in VM, based on its policy, the IMA
measurement is the key to ensure the integrity status of the VM.

The physical TPM is used to attest the integrity of the hosting OS, including
the attestation proxy and the hypervisor.

Since the proxy is doing what it is expected to do (thanks to the physical
TPM), it is guaranteed that the verifier will retrieve the IMA measurements and
compare them with its database. In this way, we can set a short time period (like
a few seconds) to ask the proxy to retrieve the IMA measurements from each
VM, and compute the digests of each of them. If the digest has changed, then
compare the new measurement with the database in the verifier.

A big challenge here is how to associate each IMA measurement with its VM.
Luckily, this can be solved with the VM-id assigned by the hypervisor when it
starts the VM, and this id cannot be modified from the VM internally.

In order to improve the scalability, it is a good option to use the push model.
So if the verifier detects that one VM integrity status is compromised (some
unknown scripts were executed or some unknown configurations loaded), it can
inform the attestation proxy which in turn can notify the user or simply shut
down the VM.

4 Conclusions

SDN and NFV are useful technologies increasingly used to implement modern
networking infrastructures. However, as they are heavily relying on various soft-
ware components distributed by several actors, we need proper techniques to

The trust problem in modern network infrastructures 127

guarantee their trustworthiness and integrity. In this paper we have presented
two possible approaches based on remote attestation to measure the integrity
state of SDN switches and virtual machines executing critical network functions.
However much more work is needed to solve practical issues (e.g. performance,
management of cryptographic identity) as well as theoretical ones (e.g. fast and
secure migration of VMs while maintaining their attestation state).

Acknowledgement

The research described in this paper is part of the SECURED project, co-funded
by the European Commission (FP7 grant agreement no. 611458).

References

1.

=N

10.

11.

12.

13.

Dalton, C., Lioy, A., Lopez, D., Risso, F., Sassu, R.: Exploiting the Network for
Securing Personal Devices. In: Cyber Security & Privacy Forum 2014, Athens
(Greece), May 21-22, 2014, pp. 16-27

Open vSwitch, https://github.com/openvswitch/ovs

TrustedGRUB, http://sourceforge.net/projects/trustedgrub/

Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and Implementation of a
TCG-based Integrity Measurement Architecture. In: 13th USENIX Security Sym-
posium, San Diego (CA, USA), August 9-13, 2004, pp. 223-238

ETSI NFV ISG: NFV Security / Problem Statement. Report ETSI GS NFV-SEC
001 (V1.1.1), October 2014. http://www.etsi.org/deliver/etsi_gs/NFV-SEC/
001_099/001/01.01.01_60/gs_NFV-SEC001v010101p.pdf

ETSI NFV ISG: NFV Security / Security and Trust Guidance. Report ETSI GS
NFV-SEC 003 (V1.1.1), December 2014. http://www.etsi.org/deliver/etsi_
gs/NFV-SEC/001_099/003/01.01.01_60/gs_NFV-SEC003v010101p.pdf

ETSI NFV ISG: NFV / Use Cases. Report ETSI GS NFV 001 (V1.1.1), Octo-
ber 2013, http://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_
60/gs_NFV001v010101p. pdf

ETSI NFV ISG: NFV Proofs of Concept. http://www.etsi.org/
technologies-clusters/technologies/nfv/nfv-poc

Jaeger, T., and Sailer, R., Shankar, U.: PRIMA: Policy-Reduced Integrity Mea-
surement Architecture. In: 11th ACM Symposium on Access Control Models and
Technologies, Lake Tahoe (CA, USA), June 7-9, 2006, pp. 19-28

Berger, S., Sailer, R., Goldman, K.A.: vIPM: Virtualizing the Trusted Platform
Module. In: 15th USENIX Security Symposium, Vancouver (B.C., Canada), July
31-August 8, 2006, pp. 305-320

Goldman, K., Sailer, R., Pendarakis, D., Srinivasan, D.: Scalable Integrity Moni-
toring in Virtualized Environments. In: 5th ACM Workshop on Scalable Trusted
Computing, Chicago (IL, USA), October 4-8, 2010, pp. 73-78

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R.,
Pratt, I., Warfield, A.: Xen and the Art of Virtualization. In: 19th ACM Symposium
on Operating Systems Principles, Bolton Landing (NY, USA), October 19-22, 2003,
pp. 164-177

Schiffman, J.,Vijayakumar, H., Jaeger, T.: Verifying System Integrity by Proxy.
In: 5th Int. Conf. on Trust and Trustworthy Computing, Vienna (Austria), June
13-15, 2012, pp. 179-200

https://github.com/openvswitch/ovs
http://sourceforge.net/projects/trustedgrub/
http://www.etsi.org/deliver/etsi_gs/NFV-SEC/001_099/001/01.01.01_60/gs_NFV-SEC001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-SEC/001_099/001/01.01.01_60/gs_NFV-SEC001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-SEC/001_099/003/01.01.01_60/gs_NFV-SEC003v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-SEC/001_099/003/01.01.01_60/gs_NFV-SEC003v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_NFV001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_NFV001v010101p.pdf
http://www.etsi.org/technologies-clusters/technologies/nfv/nfv-poc
http://www.etsi.org/technologies-clusters/technologies/nfv/nfv-poc

