
Analysis Service - programmer manual

Politecnico di Torino

version 0.2.0 - 13 December 2013

http://www.posecco.eu

http://www.posecco.eu

Analysis Service - programmer manual

Contents

1 Introduction 2

2 Software architecture 3
Implementation . 3

Plug-ins . 3

Plug-ins description . 4

eu.posecco.sdss.analisysService . 4

eu.posecco.sdss.analisysServiceLib . 4

eu.posecco.sdss.analisysService.distributedAnalyser . 4

eu.posecco.sdss.analisysService.singleAnalyserDP . 4

eu.posecco.sdss.analisysService.singleAnalyserF . 4

Metrics . 5

3 Public API 6
Policy . 6

PolicyAnomaly . 6

DistributedAnalyser . 7

SingleAnalyserDP . 7

SingleAnalyserF . 7

4 Extending the tool 8
Filtering . 8

DataProtection . 8

Distributed . 8

1 / 9

Analysis Service - programmer manual

1 Introduction

This document provides an overview of the Analysis Service from the developer’s point of view. It is considered
a companion of the ‘Analysis Service - user manual’ in which the use of the Analysis Service and its UI is
described.

The Analysis Service is used to perform a intra-policy and inter-policy analysis of filtering and data protection
configurations. Filtering and data protection configurations are defined in “D3.3 Configuration Meta-Model”.

This service is a complex toolbox containing a number of specialized modules which are presented in depth in
the following sections including their APIs, their dependencies and a how to extend them.

This document is structured as follows. The Section 2 is devoted to explain the Analysis Service internal
structure by providing a bird’s eye view of its architecture, its plug-ins and its types. The Section 3 describes
the tool APIs, focusing on the most important classes and interfaces. Finally, the Section 4 describes how to
extend the tool by adding new components, features and UIs.

Disclaimer This manual describes an experimental prototype that may be subject to substantial
changes in future releases. Do not consider this documentation as in its final version.

Note In the current release, all the MoVE1integration features of the Analysis Service are tem-
porarily disabled. When the MoVE project will be mature enough, they will be reactivated.

1More information about the MoVE project are available at http://move.q-e.at/.

2 / 9

http://move.q-e.at/

Analysis Service - programmer manual

2 Software architecture

Implementation

The Analysis Service is a tool entirely written using the Java programming language. In addition the technolo-
gies listed in Table 1 are extensively used in the project.

Name Website of the project

Eclipse plug-in framework http://eclipse.org/

Remote Application Platform tool-kit http://eclipse.org/rap/

Zest visualization tool-kit http://www.eclipse.org/gef/zest/

OWL API ontology library http://owlapi.sourceforge.net/

Pellet reasoner http://clarkparsia.com/pellet/

Table 1: The technologies used in the Analysis Service .

Plug-ins

Since the Eclipse framework was adopted, all the Analysis Service code is split into a set of specialized plug-
ins, that are:

eu.posecco.sdss.analisysService

eu.posecco.sdss.analisysServiceLib

eu.posecco.sdss.analisysService.singleAnalyserDP

eu.posecco.sdss.analisysService.singleAnalyserF

eu.posecco.sdss.analisysService.distributedAnalyser

These plug-ins are extensively intertwined amongst them as shown in the dependency graph depicted in Fig-
ure 1.

Figure 1: The Analysis Service plug-ins dependencies.

In addition, these plug-ins make use of several classes, enumeration and types contained in a number of other
SDSS-wide bundles:

3 / 9

http://eclipse.org/
http://eclipse.org/rap/
http://www.eclipse.org/gef/zest/
http://owlapi.sourceforge.net/
http://clarkparsia.com/pellet/

Analysis Service - programmer manual

eu.posecco.sdss.common
include several facilities used to pass data (e.g., the PoSecCo ontology) to the other SDSS components
such as the Infrastructure Configuration Service.

eu.posecco.sdss.libraries
include all the external libraries needed by the Analysis Service

eu.posecco.sdss.ontologies
include all the classes and types needed to manipulate the ontologies

Plug-ins description

eu.posecco.sdss.analisysService

The “eu.posecco.sdss.analisysService” plug-in contains the views and the coordinator for the analysis service.
The main classes are:

AnalisysControler : This class is the centre part of the analysis service, its implemented as singleton.

AnalisysModel : This class is the centre model for the analysis Service, it contains the actual state of the
ongoing analysis.

AnalyserInterface : This class is used by the extension point.

AnalyserView : This class implements the centre view, it contains the necessary widgets to allow the user to
perform the various types of analysis.

DPPolicyView : This class implements the view for displaying a data protection configuration.

FPolicyView : This class implements the view for displaying a filtering configuration.

AnalyserResultView : This class implements the view for displaying the result of an analysis.

AnalyserDistResultView : This class implements the view for displaying the result of an analysis.

eu.posecco.sdss.analisysServiceLib

The “eu.posecco.sdss.analisysServiceLib” plugin contains the implementation of the internal model and the
worker classes.

eu.posecco.sdss.analisysService.distributedAnalyser

The “eu.posecco.sdss.analisysService.distributedAnalyser” plug-in contains a implementation of the distributed
analyser worker classes. It contains the class “DistributedAnalyser” which implements the abstract class “Anal-
yserInterface”.

eu.posecco.sdss.analisysService.singleAnalyserDP

The “eu.posecco.sdss.analisysService.singleAnalyserDP” plug-in contains a implementation of the single fil-
tering analyser worker classes. It contains the class “SingleAnalyserDP” which implements the abstract class
“AnalyserInterface”.

eu.posecco.sdss.analisysService.singleAnalyserF

The “eu.posecco.sdss.analisysService.singleAnalyserF” plug-in contains a implementation of the single data
protection analyser worker classes. It contains the class “SingleAnalyserF” which implements the abstract
class “AnalyserInterface”.

4 / 9

Analysis Service - programmer manual

Metrics

Source code metrics are an effective way to intuitively understand the size and complexity of a piece of software.
For instance, the Table 2 shows a series of code statistics related to the Analysis Service .

Metric Value

Number of plug-ins 6
Number of packages 35
Number of classes 134
Number of methods 1067
Number of lines 12386
McCabe cyclomatic complexity 1.88

Table 2: The source code metrics.

5 / 9

Analysis Service - programmer manual

3 Public API

The Analysis Services is divided into four parts, the Filtering, the Data protection, the Distributed, and the main
part.

The main part loads dynamically the other three parts, where each of this three parts have there own public
API. Each of the three parts can be loaded contemporary by multiple instantiations, but for each part at least
one instantiations has to be loaded. At runtime the user can chose which instantiations he wants to use for the
analysis.

The three extension parts are based on the extension points of Eclipse plug-ins. The extension point used is
called “analysisService” and it is defined in the plug-in “eu.posecco.sdss.analisysService”.

The extension point “analysisService” uses the abstract class AnalyserInterface, which has the following defi-
nition:

Listing 1: AnalyserInterface

public abstract class AnalyserInterface {
private Policy policy;

public void setPolicy(Policy policy){
this.policy=policy;

}

public Policy getPolicy(){
return policy;

}

public abstract List<PolicyAnomaly> getAnomalies() throws Exception;

public abstract String getName();
}

String getName()
returns the name of the analyser

List<PolicyAnomaly> getAnomalies()
returns all anomalies found in the configuration

Policy getPolicy()
returns the class Policy

void setPolicy(Policy policy)

sets the class Policy

Policy

The class Policy used by the various implementations of an analyser is an abstract representation of config-
uration which has to be analysed.

PolicyAnomaly

The class PolicyAnomaly contains the anomaly found between two rules of the analysed configuration.

6 / 9

Analysis Service - programmer manual

DistributedAnalyser

The class DistributedAnalyser implemented in the plug-in “eu.posecco.sdss.analisysService.distributedAnalyser”
implements the abstract class “AnalyserInterface”. The overwritten function “List<PolicyAnomaly>
getAnomalies()” is a implementation of a distributed analysis of rule set configurations.

SingleAnalyserDP

The class SingleAnalyserDP implemented in the plug-in “eu.posecco.sdss.analisysService.singleAnalyserDP”
implements the abstract class “AnalyserInterface”. The overwritten function “List<PolicyAnomaly>
getAnomalies()” is a implementation of a analysis of a data protection configuration.

SingleAnalyserF

The class SingleAnalyserF implemented in the plug-in “eu.posecco.sdss.analisysService.singleAnalyserF”
implements the abstract class “AnalyserInterface”. The overwritten function “List<PolicyAnomaly>
getAnomalies()” is a implementation of a analysis of a filtering configuration.

7 / 9

Analysis Service - programmer manual

4 Extending the tool

This section describes how extend the Analysis Service functionalities by specifying the classes, extension
points and files involved in the process. For all three types of analysers a new Eclipse plug-in must be imple-
mented which uses the extension point “analysisService”.

To use this extension point it must be configured with the following three parameters: name, type, and class.
The name parameter is the name of the new extension. The type parameter is the type of the new extension and
can be set to “SingleAnalyserF” for a filtering analyser, “SingleAnalyserDP” for a data protection analyser, and
“RuleAnalyser” for a distributed analyser. The class parameter defines the class which implements the abstract
class “AnalyserInterface”.

Filtering

To implement a new filtering configuration analyser, a new plug-in must be created which uses the extension
point “analysisService” and implements a class which extends the abstract class AnalyserInterface.

This is a example definition for a filtering analysis service, the name of the analysis service chosen is “Single
Analyser F”, for a filtering configuration analyser the type must be SingleAnalyserF and the class extending
the abstract class AnalyserInterface is “eu.posecco.sdss.analysisService.singleAnalyserF.SingleAnalyserF”.

<extension point="eu.posecco.sdss.analysisService.analysisService">
<module
name = "Single Analyser F"
class =
"eu.posecco.sdss.analysisService.singleAnalyserF.SingleAnalyserF"
type = "SingleAnalyserF">

</module>
</extension>

DataProtection

To implement a new data protection configuration analyser, a new plug-in must be created which uses the
extension point “analysisService” and implements a class extends the abstract class AnalyserInterface.

This is a example definition for a filtering analysis service, the name of the analysis service chosen is “Single
Analyser DP”, for a data protection configuration analyser the type must be SingleAnalyserDP and the class ex-
tending the abstract class AnalyserInterface is “eu.posecco.sdss.analysisService.singleAnalyserDP.SingleAnalyserDP”.

<extension point="eu.posecco.sdss.analysisService.analysisService">
<module
name = "Single Analyser DP"
class =
"eu.posecco.sdss.analysisService.singleAnalyserDP.SingleAnalyserDP"
type = "SingleAnalyserDP">

</module>
</extension>

Distributed

To implement a new distributed analyser, a new plug-in must be created which uses the extension point “anal-
ysisService” and implements a class which extends the abstract class AnalyserInterface.

This is a example definition for a filtering analysis service, the name of the analysis service chosen is “Dis-
tributed Analyser”, for a distributed analyser the type must be RuleAnalyser and the class extending the abstract
class AnalyserInterface is “eu.posecco.sdss.analysisService.distributedAnalyser.DistributedAnalyser”.

8 / 9

Analysis Service - programmer manual

<extension point="eu.posecco.sdss.analysisService.analysisService">
<module
name = "Distributed Analyser"
class =
"eu.posecco.sdss.analysisService.distributedAnalyser.DistributedAnalyser"
type = "RuleAnalyser">

</module>
</extension>

9 / 9

	Introduction
	Software architecture
	Implementation
	Plug-ins
	Plug-ins description
	eu.posecco.sdss.analisysService
	eu.posecco.sdss.analisysServiceLib
	eu.posecco.sdss.analisysService.distributedAnalyser
	eu.posecco.sdss.analisysService.singleAnalyserDP
	eu.posecco.sdss.analisysService.singleAnalyserF

	Metrics

	Public API
	Policy
	PolicyAnomaly
	DistributedAnalyser
	SingleAnalyserDP
	SingleAnalyserF

	Extending the tool
	Filtering
	DataProtection
	Distributed

