
Configuration Editor - programmer manual

Politecnico di Torino

version 0.2.0 - 13 December 2013

http://www.posecco.eu

http://www.posecco.eu

Configuration Editor - programmer manual

Contents

1 Introduction 2

2 Software architecture 3
Implementation . 3

Plug-ins . 3

Plug-in description . 4

eu.posecco.sdss.configurationeditor.action . 4

eu.posecco.sdss.configurationeditor.provider . 5

eu.posecco.sdss.configurationeditor.validator . 5

eu.posecco.sdss.configurationeditor.view . 5

eu.posecco.sdss.configurationeditor.wizard . 6

eu.posecco.sdss.configurationeditor.wrapper . 6

Metrics . 6

3 Public API 7
ConfigurationEditorController . 7

4 Extending the tool 8
View . 8

ContentProvider . 8

LabelProvider . 8

addRuleAction . 8

removeRuleAction . 9

Wizard . 9

Wizardpage . 9

Validator . 9

1 / 9

Configuration Editor - programmer manual

1 Introduction

This document provides an overview of the Configuration Editor from the developer’s point of view. It is
considered a companion of the ‘Configuration Editor - user manual’ in which the use of the Configuration
Editorand its UI is described.

The Configuration Editor supports only the insertion and removal of filtering, IPsec and WS-Security rules, this
document describes how this functionalities are implemented and how a developer can extend them to support
other types of configuration rules.

This service is a complex toolbox containing a number of specialized modules which are presented in depth in
the following sections including their APIs, their dependencies and a how to extend them.

This document is structured as follows. The Section 2 is devoted to explain the Configuration Editorinternal
structure by providing a bird’s eye view of its architecture, its plug-ins and its types. The Section 3 describes
the tool APIs, focusing on the most important classes and interfaces. Finally, the Section 4 describes how to
extend the tool by adding new components, features and UIs.

Disclaimer This manual describes an experimental prototype that may be subject to substantial
changes in future releases. Do not consider this documentation as in its final version.

Note In the current release, all the MoVE1integration features of the Configuration Editorare tem-
porarily disabled. When the MoVE project will be mature enough, they will be reactivated.

1More information about the MoVE project are available at http://move.q-e.at/.

2 / 9

http://move.q-e.at/

Configuration Editor - programmer manual

2 Software architecture

The configuration editor implementation is based on one single Eclipse plug-in, which contains all necessary
perspectives, views, handlers, and helper classes to read and write the rule set configurations.

Implementation

The Configuration Editoris a tool entirely written using the Java programming language. In addition the tech-
nologies listed in Table 1 are extensively used in the project.

Name Website of the project

Eclipse plug-in framework http://eclipse.org/

Remote Application Platform tool-kit http://eclipse.org/rap/

Zest visualization tool-kit http://www.eclipse.org/gef/zest/

OWL API ontology library http://owlapi.sourceforge.net/

Pellet reasoner http://clarkparsia.com/pellet/

Hermit reasoner http://hermit-reasoner.com/

SPARQL-DL query engine http://www.derivo.de/en/resources/sparql-dl-api.html

JGraphT graph library http://jgrapht.org/

Table 1: The technologies used in the Configuration Editor.

Plug-ins

Since the Eclipse framework was adopted, all the Configuration Editorcode is contained in a eclipse plug-in,
the eu.posecco.sdss.configurationeditor plug-in is extensively intertwined amongst other plug-ins as shown
in the dependency graph depicted in Figure 1.

Figure 1: The Configuration Editorplug-ins dependencies.

In addition, these plug-ins make use of several classes, enumeration and types contained in a number of other
SDSS-wide bundles:

eu.posecco.sdss.common
include several facilities used to pass data (e.g., the PoSecCo ontology) to the other SDSS components
such as the Infrastructure Configuration Service.

eu.posecco.sdss.images
include all the icons and images

eu.posecco.sdss.libraries
include all the external libraries needed by the Configuration Editor

eu.posecco.sdss.ontologies
include all the classes and types needed to manipulate the ontologies

3 / 9

http://eclipse.org/
http://eclipse.org/rap/
http://www.eclipse.org/gef/zest/
http://owlapi.sourceforge.net/
http://clarkparsia.com/pellet/
http://hermit-reasoner.com/
http://www.derivo.de/en/resources/sparql-dl-api.html
http://jgrapht.org/

Configuration Editor - programmer manual

eu.posecco.sdss.util
include a number of UI-independent utility classes.

Plug-in description

The eu.posecco.sdss.configurationeditor is composed by the following packages:

eu.posecco.sdss.configurationeditor.action
This package contains all classes related to GUI action events such as insert new rules and remove existing
ones.

eu.posecco.sdss.configurationeditor.handlers
This package contains all classes related to GUI action handlers.

eu.posecco.sdss.configurationeditor.perspective
This package contains the class which models the Eclipse perspective of the configuration editor.

eu.posecco.sdss.configurationeditor.provider
This package contains all classes which implement the ContentProviders and LabelProviders for the
views.

eu.posecco.sdss.configurationeditor.validator
This package contains all classes which implement the input validators for the wizards.

eu.posecco.sdss.configurationeditor.view
This package contain the classes which model the views for filtering configurations and data protection
configurations.

eu.posecco.sdss.configurationeditor.wizard
This packet contain the classes related to wizards, such as new filtering rule wizard, new IPsec rule wizard
and new WSsec rule wizard.

eu.posecco.sdss.configurationeditor.wrapper
This packet contains the helper classes to read and write from and to the ontology.

eu.posecco.sdss.configurationeditor.action

The package eu.posecco.sdss.configurationeditor.action contains the following classes:

AddFilteringRuleAction
The AddFilteringRuleAction handles the event in the case a user wants to add a new filtering rule to a
existing filtering configuration.

AddIPSecRuleAction
The AddIPSecRuleAction handles the event in the case a user wants to add a new IPSec rule to a existing
data protection configuration.

AddWSSecRuleAction
The AddWSSecRuleAction handles the event in the case a user wants to add a new WS-Security rule to
a existing data protection configuration.

AddWSSecRuleAction
The AddSSHRuleAction handles the event in the case a user wants to add a new SSH rule to a existing
data protection configuration.

RemoveFilteringRuleAction
The RemoveFilteringRuleAction handles the event in the case a user wants to remove a filtering rule from
a existing filtering configuration.

4 / 9

Configuration Editor - programmer manual

RemoveIPSecRuleAction
The RemoveIPSecRuleAction handles the event in the case a user wants to remove a IPsec rule from a
existing data protection configuration.

RemoveWSSecRuleAction
The RemoveWSRuleAction handles the event in the case a user wants to remove a WS-Security rule
from a existing data protection configuration.

RemoveWSSecRuleAction
The RemoveSSHRuleAction handles the event in the case a user wants to remove a SSH rule from a
existing data protection configuration.

eu.posecco.sdss.configurationeditor.provider

The package eu.posecco.sdss.configurationeditor.provider contains the following classes:

ChprotConfContentProvider
The ChprotConfContentProvider class is the ContentProvider for the ChprotConfView.

ChprotConfLabelProvider
The ChprotConfLabelProvider class is the LabelProvider for the ChprotConfView.

FilteringConfContentProvider
The FilteringConfContentProvider class is the ContentProvider for the FilteringConfView.

FilteringConfLabelProvider
The FilteringConfLabelProvider class is the LabelProvider for the FilteringConfView.

eu.posecco.sdss.configurationeditor.validator

The package eu.posecco.sdss.configurationeditor.validator contains the following classes:

IntegerValidator
The IntegerValidator class verifies if the value of a TextBox is a valid number, otherwise the TextBox is
painted red.

IPValidator
The IPValidator class verifies if the value of a TextBox is a valid IP address , otherwise the TextBox is
painted red.

PortValidator
The PortValidator class verifies if the value of a TextBox is a valid port number, otherwise the TextBox
is painted red.

eu.posecco.sdss.configurationeditor.view

The package eu.posecco.sdss.configurationeditor.view contains the following classes:

ChprotConfView
The ChprotConfView is the view used to display data protection configurations in a tree structure. It
uses the classes ChprotConfContentProvider and ChprotConfLabelProvider as ContentProvider and La-
belProvider respectively.

FilteringConfView
The FilteringConfView is the view used to display filtering configurations in a tree structure. It uses
the classes FilteringConfContentProvider and FilteringConfLabelProvider as ContentProvider and La-
belProvider respectively.

5 / 9

Configuration Editor - programmer manual

eu.posecco.sdss.configurationeditor.wizard

The package eu.posecco.sdss.configurationeditor.wizard contains the following classes:

NewFilteringRuleWizard
The class NewFilteringRuleWizard is the wizard which is used as input form for a new filtering rule, it is
composed by one single page (NewFilteringRuleWizardPage1).

NewFilteringRuleWizardPage1
The class NewFilteringRuleWizardPage1 is the wizard page used by the NewFilteringRuleWizard and
contains all necessary input fields and associated validators for a new filtering rule.

NewIPsecRuleWizard
: The class NewIPsecRuleWizard is the wizard which is used as input form for a new IPsec rule, it is
composed by one single page (NewIPsecRuleWizardPage1).

NewIPsecRuleWizardPage1
The class NewIPsecRuleWizardPage1 is the wizard page used by the NewIPsecRuleWizard and contains
all necessary input fields and associated validators for a new IPsec rule.

NewWSRuleWizard
: The class NewWSRuleWizard is the wizard which is used as input form for a new WS-Security rule, it
is composed by one single page (NewWSRuleWizardPage1).

NewWSRuleWizardPage1
The class NewWSRuleWizardPage1 is the wizard page used by the NewWSRuleWizard and contains all
necessary input fields and associated validators for a new WS-Security rule.

NewSSHRuleWizard
: The class NewSSHRuleWizard is the wizard which is used as input form for a new SSH rule, it is
composed by one single page (NewSSHRuleWizardPage1).

NewSSHRuleWizardPage1
The class NewSSHRuleWizardPage1 is the wizard page used by the NewSSHRuleWizard and contains
all necessary input fields and associated validators for a new WS-Security rule.

eu.posecco.sdss.configurationeditor.wrapper

The package eu.posecco.sdss.configurationeditor.wrapper contains the following classes:

ReadDataProtectionConfiguration
The class ReadDataProtectionConfiguration is used to read data protection configurations from the on-
tology into the ConfigurationMetaModel used by PoSecCo.

ReadFilteringConfiguration
The class ReadFilteringConfiguration is used to read filtering configurations from the ontology into the
ConfigurationMetaModel used by Posecco.

WriteConfiguration
The class WriteConfiguration is used to save data protection configurations and filtering configurations
into the ontology.

Metrics

Source code metrics are an effective way to intuitively understand the size and complexity of a piece of software.
For instance, the Table 2 shows a series of code statistics related to the Configuration Editor.

6 / 9

Configuration Editor - programmer manual

Metric Value

Number of plug-ins 1
Number of packages 9
Number of classes 32
Number of methods 423
Number of lines 2502

Table 2: The source code metrics.

3 Public API

The centre part of the Configuration Editoris the ConfigurationEditorController, which contains
all the model, the ontology and the model. This class ConfigurationEditorController is contained
in the eu.posecco.sdss.configurationeditor plug-in.

ConfigurationEditorController

The ConfigurationEditorController class exposes the following public methods:

ConfigurationEditorController()
create a new ConfigurationEditorController, it’s a private constructor since the class is implemented as a
singleton.

ConfigurationEditorController getInstance()
returns a instance of the class ConfigurationEditorController

Ontology getOwl()
retrieve the current PoSecCo ontology

Map<String, Collection<DataProtectionConfiguration>> getDataProtConfList()
returns all data protection configurations read from the ontology

Map<String, Collection<FilteringConfiguration>> getFilteringConfList()
returns all filtering configurations read from the ontology

void refreshView()
refreshes all registered views

void setFilteringConfView(FilteringConfView filteringConfView)

sets the filtering configuration view

void setChprotConfView(ChprotConfView chprotConfView)

sets the data protection configuration view

7 / 9

Configuration Editor - programmer manual

4 Extending the tool

This section describes how a new type of rule set configuration can be handled by the configuration editor.

View

First a new view for the new rule set configuration has to be created, the new view also needs to be inserted into
the Perspective of the Configuration Editor.
Starting form the FilteringConfView the following lines of code needs to be modified:
The name of the view:

frmLogicalAssociationImplementations.setText("Configurations Explorer");

The list of configuration available needs to be loaded:

update(ConfigurationEditorController.getInstance().getFilteringConfList());

Insert the addRuleAction to the view, the element on which the right click was performed needs to be converted
in the appropriated configuration type, and a new Action class needs to be implemented.

FilteringConfiguration fruleconf= (FilteringConfiguration)element;
menuMgr.add(new AddFilteringRuleAction(parent, fruleconf));

Insert the removeRuleAction to the view, the element on which the right click was performed needs to be
converted in the appropriated rule type, and a new Action class needs to be implemented.

FilteringConfigurationRule frule= (FilteringConfigurationRule)element;
menuMgr.add(new RemoveFilteringRuleAction(parent, frule));

Insert the new ContentProvider to the treeViewer.

treeViewer.setContentProvider(new FilteringConfContentProvider());

Add the new LabelProvider to the treeViewer.

treeViewer.setLabelProvider(new FilteringConfLabelProvider());

ContentProvider

This class needs to be written for every configuration type, the FilteringConfContentProvider can be used as
template.

LabelProvider

This class needs to be written for every configuration type, the FilteringConfLabelProvider can be used as
template.

addRuleAction

Starting from the AddFilteringRuleAction the following lines of code needs to be modified:
The private variable which holds the configuration:

private FilteringConfiguration filteringConf;

The function which returns the text displayed after the right click:

8 / 9

Configuration Editor - programmer manual

public String getText() {
return "Add Filtering Rule";

}

The creation of the appropriated Wizard, using the new Wizard:

WizardDialog wizardDialog = new WizardDialog(parent.getShell(),
new NewFilteringRuleWizard(filteringConf));

removeRuleAction

Starting from the RemoveFilteringRuleAction the following lines of code needs to be modified:
The private variable which holds the configuration:

private FilteringConfiguration filteringConf;

The function which returns the text displayed after the right click:

public String getText() {
return "Add Filtering Rule";

}

Wizard

Starting from NewFilteringRuleWizard the following lines of code needs to be modified:
The private variable which holds the configuration:

private FilteringConfiguration filteringConf;

The new WizardPage which contains the input form:

page_one = new NewFilteringRuleWizardPage1(new LinkedList<String>());

The function performFinish() has to be rewritten so that the new type of rule is inserted in the appropriated type
of configuration.

public boolean performFinish() {}

Wizardpage

Starting from NewFilteringRuleWizardPage1 the following lines of code needs to be modified:
The function getFilteringRule() needs to be rewritten so that it returns the appropriated type of rule with the
values inserted by the user in the input form.

public FilteringConfigurationRule getFilteringRule(){}

The function createControl(Composite parent) needs to be rewritten so that it models the input form appropri-
ated for the new type of rule.

public void createControl(Composite parent) {}

Validator

Starting from the IntegerValidator the following lines of code needs to be rewritten:
The variable regexp specifies the regular expression which validates the value inserted by the user.

String regexp = "ˆ[0-9]*$";

9 / 9

	Introduction
	Software architecture
	Implementation
	Plug-ins
	Plug-in description
	eu.posecco.sdss.configurationeditor.action
	eu.posecco.sdss.configurationeditor.provider
	eu.posecco.sdss.configurationeditor.validator
	eu.posecco.sdss.configurationeditor.view
	eu.posecco.sdss.configurationeditor.wizard
	eu.posecco.sdss.configurationeditor.wrapper

	Metrics

	Public API
	ConfigurationEditorController

	Extending the tool
	View
	ContentProvider
	LabelProvider
	addRuleAction
	removeRuleAction
	Wizard
	Wizardpage
	Validator

