
ITPolicy Tool - programmer’s manual

Università degli Studi di Bergamo

version 0.1.0 - May 7th, 2013

http://www.posecco.eu

http://www.posecco.eu

ITPolicy Tool - programmer’s manual

Contents

1 Introduction 2

2 Software architecture 3
Input/Output ITPolicy Tool . 4

Source Code . 4

Implementation . 5

Editor . 5

Harmonization . 6

Refinement . 7

Enrichment . 8

3 Extending the tool 9
Enrichment . 9

Refinement . 10

1 / 14

ITPolicy Tool - programmer’s manual

1 Introduction

This document provides an overview of the ITPolicy Tool from the developer’s point of view. It is considered a
companion of the ‘ITPolicy Tool - user’s manual’ in which the use of the ITPolicy Tool and its UI is described.

The IT Policy Tool supports the creation and the maintenance of the IT Policy and was implemented as an
Eclipse plug-in and deployed as a RAP Application. The choice of Eclipse as the framework for the design of
the PoSecCo IT Policy Tool is motivated by the flexibility of the framework and the support that it offers for the
realization of effective interfaces for the management of rich structured elements. The IT Policy Tool facilitates
the integration with the reasoning services implemented through the Semantic Web tools.

This document is structured as follows. The Section 2 is devoted to explain the IT Policy Tool internal structure
by providing a bird’s eye view of its architecture, its plug-ins and its types. The Section 3 describes how to
extend the tool by adding new components, features and UIs.

Disclaimer This manual describes an experimental prototype that may be subject to substantial
changes in future releases. Do not consider this documentation as in its final version.

Note In the current release, all the MoVE1integration features of the IT Policy Tool are temporarily
disabled. When the MoVE project will be mature enough, they will be reactivated.

1More information about the MoVE project are available at http://move.q-e.at/.

2 / 14

http://move.q-e.at/

ITPolicy Tool - programmer’s manual

View

Controller

Model

Peripheral
modules

Shared
modules

Peripheral
modules
Peripheral
modules

Shared
modules
Shared
modules

Figure 1: Architecture of the Tool

2 Software architecture

We introduce here the main design principles that will be followed in the construction of the PoSecCo IT Policy
Tool, an Eclipse plugin that supports the definition of IT Policies. The pattern used in the development of the
tool is the Iterative and incremental development. The basic idea behind this method is to develop a system
through repeated cycles (iterative) and in smaller portions at a time (incremental), allowing software developers
to take advantage of what was learned during development of earlier parts or versions of the system. Learning
comes from both the development and use of the system, where possible key steps in the process start with a
simple implementation of a subset of the software requirements and iteratively enhance the evolving versions
until the full system is implemented. At each iteration, design modifications are made and new functional
capabilities are added.

The ITPolicy Tool aims at allowing security administrators to define, manage and analyze security policies
through several refinement steps. We have chosen to implement it on the basis of the Eclipse framework for
four main reasons:

1. Eclipse is now one of the de-facto standards in terms of IDEs and has several plugins related to model
driven engineering. The Eclipse framework is flexible enough to support the ITPolicy Tool requirements,

2. it provides several useful characteristics that ease the definition of the GUI of the tool,

3. it can be easily integrated with Semantic Web tools by using the OWLAPI, Jena libraries,

4. by defining a new extension point, it lets us define an extensible and flexible way to handle the integration
and customization of new services in the architecture.

Figure 1 represents the abstract architecture of the tool. The pattern used to develop this level is the Model-
View-Controller (MVC).

• Controller module. The Controller module represents the core of the entire plugin. It instantiates each
module at start time, receives the command from the user (through the View module) and executes the
related action on the data.

• Model module. The Model module permits to maintain a dynamic representation of the IT Policy. The
model is a collection of Java classes that keep updated the information about the IT Policy.

• View module. The View module provides the functionalities to show the information on the screen.

3 / 14

ITPolicy Tool - programmer’s manual

Furthermore, there are two other modules:

• Peripheral module. It is also known as Functional module because it implements a specific functionality
(e.g., Harmonization, Enrichment).

• Shared module. It provides functionalities that are common to several modules.

Input/Output ITPolicy Tool

Due to the fact that all the artifacts produced by the PoSecCo tools (e.g., CoSerMas, SDSS) have to be stored
in MoVE, the ITPolicy Tool provides a complete set of functionalities to retrieve and store artifacts in MoVE.
More specifically, the ITPolicy Tool can receives as input (a) XMI files, (b) OWL files and (c) XML files, all
of them in agreement with the IT layer Security meta-model. Furthermore, the ITPolicy tool can produce as
output artifacts in (a) XMI format and (b) OWL format.

Source Code

The source code of the ITPolicy Tool is available on the ITPolicy Tool web site 2. In order to give an overview
on the size and complexity of the implementative effort for the ITPolicy Tool, Table 1 provides a “qualitative”
description through the use of several metrics. The metrics selected are the following:

• NOP: Number Of Packages

• NOC: Number Of Classes

• TLOC: Total Lines of Code

• NOM: Number of Methods

• VG: McCabe Cyclomatic Complexity
2http://cs.unibg.it/posecco/source.html

4 / 14

ITPolicy Tool - programmer’s manual

Project Name NOP NOC TLOC NOM VG
eu.posecco.businessrequirement 5 6 538 33 1.175
eu.posecco.enrichment.core 12 27 3184 225 1.391
eu.posecco.enrichment.landscape 8 10 629 44 1.481
eu.posecco.importfiles 1 3 230 3 1.608
eu.posecco.importontology 2 6 322 16 1.85
eu.posecco.itfunctionalmetamodel 6 7 424 24 1.516
eu.posecco.itharmonization.core 8 48 7904 580 1.568
eu.posecco.itharmonization.interactive.authenticationcheck 1 1 55 1 1.12
eu.posecco.itharmonization.interactive.cyclecheck 1 4 188 4 1.375
eu.posecco.itharmonization.modality.conflict 4 12 2232 14 1.643
eu.posecco.itharmonization.redundancy 1 2 782 11 1.6
eu.posecco.itharmonization.repair 2 5 349 12 2.132
eu.posecco.itharmonization.sod 1 1 122 4 1.25
eu.posecco.itontology 4 5 1844 85 1.764
eu.posecco.itpolicytool 31 100 16767 835 2.164
eu.posecco.itpolicytool.consumer 2 3 64 7 0.923
eu.posecco.itpolicytool.publisher 1 2 49 6 1.067
eu.posecco.itsearch 3 5 582 20 1.576
eu.posecco.itsecuritymetamodel 5 16 5510 271 2.2
eu.posecco.move 5 128 41751 2084 3.009
eu.posecco.neontoolkit.manager 3 4 387 14 1.786
eu.posecco.pellet 3 4 1071 12 1.453
eu.posecco.refinement.core 15 29 4326 242 1.629
Total 124 428 89310 4547 -

Table 1: Metrics

Implementation

Figure 3 provides an overview of all the packages, and relative dependencies, contained in the ITPolicy Tool.

Editor

The ITPolicy Tool delivers several functionalities provided by different components.

• a main window to display and edit ITPolicy description files. The tool assigns a different tab panel in the
window to every concept from the metamodel. This set of tabs provides the user with a high level guide
through the model, always offering direct access to the main components of the model. The selection
of a tab opens a form that permits to enter values for each of the properties of the corresponding entity.
Instances of each class can be described in a homogeneous way by the same form used for entering its
properties. The plug-in has many forms (see Figure 2 for an example). These forms allow to maintain a
high usability of the tool:

• a navigation tool, that organizes resources in a finer taxonomy according to the specific top level concept
selected by the user in the main window. The classification proposed to the user is driven by the ontology
itself. This makes the tool quite flexible and automatically adaptable to changes in the ontology. The tool
can be applied to any fragment of the metamodel.

• a search service, that offers the possibility to the user to search a specific element in the ITPolicy and the
related element (e.g., business security requirements).

• a set of task buttons, published in the main toolbar, that offer direct access to functions like the creation of
the OWL ontology starting from an instance of the security policy or the activation of the reasoning-based
checking (i.e., harmonization).

5 / 14

ITPolicy Tool - programmer’s manual

Another functionality provided by the ITPolicy Tool to fulfill the requirements ITP-R08 and ITP-R09 is the
possibility to link the ITPolicy elements to (a) the Business Security requirements, (b) the Functional System
model and (c) the Abstract Configuration, in order to create the Policy chain and then store all of this data in
MoVE. MoVE is the central repository for models and for the ontologies used in PoSecCo. Due to the fact
that the link between the ITPolicy and the Abstract Configuration is built automatically through the refinement
phase, the user must build, manually, the links among the ITPolicy and other layers (i.e., Business Security
requirements, Functional System model). In order to aid the user in the building of links among meta-models,
the ITPolicy Tool provides two views allowing the user to easily choose the elements, respectively business
security requirements and IT functional elements, to link with a specific ITPolicy.

Harmonization

One of the main functionalities provided by the ITPolicy Tool is the Harmonization phase. This phase allows
the tool to prevent, detect and correct possible inconsistencies in the policies. Inconsistencies can represent
misconfigurations, conflicts between different policies or simply suboptimal or redundant descriptions of the
intended constraints. Harmonization is focused on the following aspects:

• verification of the correctness of each policy with respect to the PoSecCo policy ontology;

• detection of possible inconsistencies between contradictory policies at a given level of abstraction;

• detection of possible inconsistencies between an abstract policy and a policy that refines it at a lower
level of details;

• identification of redundant policies in the same policy set.

According to the architecture presented in Section 2, the peripheral modules in charge to provide these func-
tionalities are the following:

Interactive modules: these modules implement several interactive reasoning services which are executed dur-
ing the editing phase of the ITPolicy. They are used to detect missing individuals in the ontology or to
identify axioms that introduce structural violations in the ontology. These modules are implemented by
using Semantic Web technologies, primarily by using SPARQL-DL due to its graph matching capabilities.

eu.posecco.itharmonization.interactive.checkMissingITElement implements a reasoning servi-
ce that checks whether a certain ITAuthenticationRule exists or not. This functionality aids the user dur-
ing the editing phase of the ITPolicy. We know that authorization and authentication are strictly related.
For instance, it makes no sense define authorizations for a user on a system without an authentication
that allows the user to logon on the system, and respectively define authentications for a user on a sys-
tem without adding authorizations. Thus, in order to avoid this issue, the ITPolicy Tool provides the
functionality to check the presence of an authentication when the user inserts an authorization.

eu.posecco.itharmonization.interactive.checkStructuralConstraints implements several interac-
tive reasoning services that prevent the creation of structural inconsistencies (e.g., cycles in the group
hierarchy, in the role hierarchy and in the security object hierarchy).

Standard reasoning modules: these modules can be used to detect anomalies and inconsistencies in the IT
policy under development. In this way the ITPolicy Tool can report them to the user, and let him modify
the model according to the analysis’ results, in order to remove inconsistencies. These modules are
implemented using Semantic Web technologies, i.e., the IT policy is represented as an OWL ontology
and the reasoning services are expressed by means of Semantic Web tools, e.g., OWL-DL, SWRL and
SPARQL-DL.

eu.posecco.itharmonization.modalityconflict is the component that implements the Policy In-
compatibility reasoning service, which can be used to detect authorizations that are incompatible; e.g.,
it can detect if in the IT-Model there is an authorization that gives to a user the permission to execute a
certain action and another authorization that removes from the same user the permission to execute the

6 / 14

ITPolicy Tool - programmer’s manual

same action. It defines the PolicyIncompatibility extension for the ITReasoningService extension point.
Three versions of the service exist: the first two versions implement the service by means of OWL-DL
reasoning (the first one uses Hermit as reasoner whereas the second one uses Pellet) and the last one
implements the service by means of SWRL rules.

eu.posecco.itharmonization.redundancy is the component that implements the Redundancy De-
tection reasoning service which can be used to detect redundancies in the IT-Model, i.e., the model may
contain authorizations that are implied by other authorizations and thus can be removed. It defines the
RedundancyDetection extension for the ReasoningService extension point. The reasoning service is im-
plemented by means of SWRL rules and SPARQL-DL queries.

eu.posecco.itharmonization.sod is the component that implements the SoD Conflict Detection rea-
soning service which can detect authorizations that break Separation of Duty constraints expressed in the
IT policy. It defines the SoDConflictDetection extension for the ReasoningService extension point. The
reasoning service is implemented by using OWL-DL reasoning. Two versions of the service exist: the
first one uses Hermit as reasoner, whereas the second one uses Pellet.

Repair module: This module implements the repair services that can provide the user with semi-automated
repair capabilities. A repair service takes as input a list of IFix objects, which is the result of the execution
of a reasoning service, and it computes a list of repair options that can be applied to the IT policy in order
to remove the detected problems.

eu.posecco.itharmonization.repair implements two repair services, an automated one and a semi-
automated one. The repair strategies implemented in both services are simple. In case the inconsistency
is due to a Redundancy issue, the repair service removes the redundant authorizations. In case the incon-
sistency is due to a Separation of Duty issue, the repair service removes one of the role authorizations
or role hierarchy axioms that cause the SoD. In case the inconsistency is due to a Modality Conflict, the
repair service removes one of the system authorizations causing the conflict.

Furthermore, a shared module among all the components described above is the Harmonization core. It is the
component that contains all the functionalities shared by the reasoning services. It contains the classes that
manage the ontology by using the OWL-API Java library (enriched by the use of SWRL and SPARQL-DL).
It allows the definition of an ontological representation of the IT Policy. OWL-API through OWLDataFactory
objects permits to instantiate all classes, properties and axioms of the ontology. This component is a dependency
of the reasoning service components presented above, because all these components use core functionalities.
The dedicated functionalities of a specific reasoning service, e.g., a particular reasoner or a set of SWRL rules,
are included only in the specific component.

Refinement

As described in the IT layer Security meta-model supports the representation of authentication and access con-
trol policies. It introduces several concepts that offer a high degree of flexibility and modularity. Furthermore,
an important characteristic of the IT layer Security meta-model is the integration with ontologies, which in-
crease the expressive power of the model and permit to support both the evolution of the scenario and the
realization of sophisticated checks (e.g., consistency). Furthermore, ontologies enrich concepts and provide a
more detailed explanation of the concepts themselves. The use of ontologies is the foundation of the refinement
(and enrichment) process.

As for the harmonization process, the policy refinement process is executed by orchestrating a set of refinement
modules. Each refinement module can identify the set of model elements readily available for refinement and
produce a new description fragment that describes abstract configurations. In order to manage, in a flexible way,
the refinement process we have decided to adopt the same approach described in the harmonization process, thus
we have implemented the refinement process with the use of extension points (see Section 3 for an exhaustive
explanation).

The peripheral module in charge to provide these functionalities is the following:

7 / 14

ITPolicy Tool - programmer’s manual

Refinement module: This module implements the refinement service. The refinement service takes as input
the enriched ontology, which is the result of the enrichment process, and it performs the transformation
from the enriched IT Level to Abstract Configuration level.

eu.posecco.refinement.core implements the refinement service. It is composed by several modules,
each dedicated to a specific target system (e.g., DBMS, OS). It defines the following extensions (both
for authentication and authorization) (a) DBMSRefinementModule and (b)OSRefinementModule for the
RefinementModule extension point (see Section 3 for an exhaustive explanation). The service is imple-
mented by the use of Jena for the ontology management.

Enrichment

The enrichment of IT policies that contain authorization or authentication rules is realized by importing en-
richment ontologies that are specific to the target system’s technology and type of policy (e.g., authentication
or authorization). The ITPolicy Tool implements several enrichment modules that are executed during the en-
richment process. They are used to introduce additional information. As for harmonization and refinement,
the import of enrichment ontology is based on the use of extension points. The tool defines an extension point,
called Enrichment, that allows other plugins to contribute with new enrichment modules.

The peripheral module in charge to provide these functionalities is the following:

Enrichment modules: This module implements the enrichment service. The enrichment service takes as input
the ontological representation of the IT Policy and, through the import of additional ontologies, gener-
ates an enriched ontology containing information about authorization and authentication and the target
system.

[eu.posecco.enrichment.core] implements the enrichment service. As for the refinement service, it
is composed by several modules, each dedicated to a specific target system (e.g., DBMS, OS). For in-
stance, it defines the following extensions (both for authentication and authorization): (a) DBEnrichment-
Module (for MySQL 5.*) and (b)OSEnrichmentModule (for CentOS 5.*) for the EnrichmentModule ex-
tension point (see Section 3 for an exhaustive explanation). In order to aid the user in the import of the
enrichment ontology, the module provides the functionality to use a custom wizard for each enrichment
ontology.

8 / 14

ITPolicy Tool - programmer’s manual

3 Extending the tool

This section describes how extend the ITPolicy Tool functionalities by specifying the classes, extension points
and files involved in the process.

Enrichment

The Policy Enrichment plug-in implements several enrichment modules which are executed during the enrich-
ment process. They are used to introduce additional information. In general, the enrichment process is led by
the CPE name attribute of the class ITResource related to the IT element. The Policy Enrichment defines an
extension point, called Enrichment, that allows other plugins to contribute with new enrichment modules.

<element name="module">
<complexType>

<attribute name="name" type="string" />
<attribute name="CPEName" type="string" use="required">

<annotation>
<documentation>

The CPE of the element enriched by the module.
</documentation>

</annotation>
</attribute>
<attribute name="ontologyIRI" type="string" use="required">

<annotation>
<documentation>

The IRI of the ontology used in the EM.
</documentation>

</annotation>
</attribute>
<attribute name="wizard" type="string">

<annotation>
<documentation>

The dedicated wizard for the EM.
</documentation>
<appinfo>

<meta.attribute kind="java"
basedOn="eu.posecco.enrichment.core.wizard.

EnrichmentModuleWizard:"/>
</appinfo>

</annotation>
</attribute>

</complexType>
</element>

Listing 1: Definition of Enrichment Extension Point

The extension point, whose definition is presented in Listing 1, has four attributes:

1. name represents the name of the enrichment module,

2. CPEName represents the CPE name of the element which has to be enriched,

3. ontologyIRI represents the enrichment ontology IRI,

4. wizard represents the class that implements a dedicated wizard in order to help the user, in the addition
to concepts belong to the enrichment ontology.

9 / 14

ITPolicy Tool - programmer’s manual

As described before, the plug-in that wants to contribute with new functionalities has to define an extension
satisfying the extension point. Figure 4 shows an example of the implementation of the extension point.

Refinement

As for the policy enrichment, the policy refinement process is executed by orchestrating a set of refinement
modules. Each refinement module can identify the set of model elements readily available for refinement and
produce a new description fragment that describes abstract configurations. In order to manage, in a flexible
way, the refinement process we have decided to adopt the same approach of policy enrichment, thus we have
implemented the refinement process with the use of an extension point.

<element name="module">
<complexType>

<attribute name="systemType" use="required">
<simpleType>

<restriction base="string">
<enumeration value="DBMS"></enumeration>
<enumeration value="OS"></enumeration>
. . .

</restriction>
</simpleType>

</attribute>
<attribute name="elementType" use="required">

<simpleType>
<restriction base="string">

<enumeration value="ITSystemAuthorization"></enumeration>
<enumeration value="ITRoleAuthorization"></enumeration>
<enumeration value="ITAuthenticationRule"></enumeration>
. . .

</restriction>
</simpleType>

</attribute>
<attribute name="class" type="string" use="required">

<annotation>
<appinfo>

<meta.attribute kind="java" basedOn=":eu.posecco.refinement.
core.IRefinementModule"/>

</appinfo>
</annotation>

</attribute>
<attribute name="name" type="string" use="required" />

</complexType>
</element>

Listing 2: Definition of Refinement Extension Point

The extension point, whose definition is presented in Listing 2, has four attributes:

1. name represents the name of the refinement module,

2. class represents the class that implements the refinement module for the specific IT element,

3. elementType represents the type of the IT element (e.g., ITSystemAuthorization, ITRoleAuthorization),

4. systemType represents the type of the concrete system involved in the policy (e.g., DBMS, OS)

Figure 5 shows an example of the implementation of a refinement module for DBMS (systemType attribute)
involved in ITSystemAuthorizations (elementType attribute).

10 / 14

ITPolicy
Tool-program

m
er’s

m
anual

Figure 2: Components of the Tool

11
/14

ITPolicy
Tool-program

m
er’s

m
anual

Figure 3: Components of the Tool

12
/14

ITPolicy
Tool-program

m
er’s

m
anual

Figure 4: Definition of an Enrichment extension.

13
/14

ITPolicy
Tool-program

m
er’s

m
anual

Figure 5: Definition of a Refinement extension.

14
/14

	Introduction
	Software architecture
	Input/Output ITPolicy Tool
	Source Code
	Implementation
	Editor
	Harmonization
	Refinement
	Enrichment

	Extending the tool
	Enrichment
	Refinement

