
LA Generation Service - programmer manual

Politecnico di Torino

version 0.2.0 - 13 December 2013

http://www.posecco.eu

http://www.posecco.eu

LA Generation Service - programmer manual

Contents

1 Introduction 2

2 Software architecture 3
Implementation . 3

Plug-ins . 4

Metrics . 6

3 Public APIs 8
The model . 8

TBox module . 9

ABox module . 10

Low-level mapper . 11

Enrichment . 13

The LA extraction . 16

4 Extending the tool 18
Developing a new UI . 18

Adding a new phase in the refinement . 18

Adding new low-level mappers . 19

The eu.posecco.sdss.lageneration.lowlevel.modules extension point 19

The LowLevelMapper class . 20

Adding new enrichment modules . 20

The eu.posecco.sdss.lageneration.enrichment.modules extension point 21

The SmartClassifier class . 22

The AggregationDiscoverer class . 23

Modifying the PoSecCo ontology . 23

1 / 25

LA Generation Service - programmer manual

1 Introduction

This document provides an overview of the LA Generation Service from the developer’s point of view. It is
considered a companion of the ‘LA Generation Service - user manual’ in which the use of the LA Generation
Service and its UI are described.

The LA Generation Service is used to transform a set of policies into logical associations (LAs). This process
is known as policy refinement. For further information regarding the policy refinement process and the LA
generation see ‘D3.5 - Models to refine the IT policy at service level’.

This service is a complex toolbox containing a number of specialized modules which are presented in depth in
the following sections including their APIs, their dependencies and a how to extend them.

This document is structured as follows. The Section 2 is devoted to explain the LA Generation Service internal
structure by providing a bird’s eye view of its architecture, its plug-ins and its types. The Section 3 describes
the tool APIs, focusing on the most important classes and interfaces. Finally, the Section 4 describes how to
extend the tool by adding new components, features and UIs.

2 / 25

LA Generation Service - programmer manual

2 Software architecture

The goal of the LA Generation Service is to produce a set of logical associations via the policy refinement
process which is graphically depicted in Figure 1.

Figure 1: The policy refinement process.

The policy refinement is performed in two consecutive stages:

Ontology connection At the beginning, the LA Generation Service creates the PoSecCo ontology which con-
tains all the information needed to produce the LAs. This stage is performed in two passes:

TBox module phase A set of TBox ontologies1 are merged together to form an initial PoSecCo ontology
without any individual. For more information about the PoSecCo meta-models see ‘D2.2 - IT policy
meta-model and language’ and ‘D4.2 - Structural landscape meta-model’.

ABox module phase The PoSecCo ontology is merged with a set of ABox ontologies2, by filling it with
the landscape and policy information.

Ontology manipulation When the initial PoSecCo ontology is created, the LA Generation Service analyzes it
in order to extract the logical associations. This part is performed in three steps:

Low-level mapping The IT level instances are mapped towards one or more low-level objects in the
infrastructure layer.

Enrichment A series of landscape inferences and deductions are performed in order to produce more
secure and strict LAs in the following phase.

LA extraction The data acquired in the previous two steps is analyzed in order to produce the logical
associations which are store in the PoSecCo ontology.

The following paragraphs provides a briefly overview of the internal infrastructure of each aforementioned
phase and their features.

Implementation

The LA Generation Service is a tool entirely written using the Java programming language. In addition the
technologies listed in Table 1 are extensively used in the project.
The implementation of the LA Generation Service refinement process, depicted in Figure 1, is showed in
Figure 2 with the relevant class names.

1Roughly speaking, in PoSecCo, a TBox ontology is an ontology which does not contain any information about the landscape and it
policies, that is it consist only of classes, properties and no proper individuals.

2Roughly speaking, in PoSecCo, an ABox ontology is an ontology which contains some information about the landscape or the
policies.

3 / 25

LA Generation Service - programmer manual

Name Website of the project

Eclipse plug-in framework http://eclipse.org/

Remote Application Platform toolkit http://eclipse.org/rap/

Zest visualization toolkit http://www.eclipse.org/gef/zest/

OWL API ontology library http://owlapi.sourceforge.net/

Pellet reasoner http://clarkparsia.com/pellet/

Hermit reasoner http://hermit-reasoner.com/

SPARQL-DL query engine http://www.derivo.de/en/resources/sparql-dl-api.html

JGraphT graph library http://jgrapht.org/

Table 1: The technologies used in the LA Generation Service.

Figure 2: The core implementation schema.

Each aforementioned phase is implemented by an instance of a class acting as a coordinator for several other
sub-components, that is:

• the TBoxModule class is the coordinator of the TBox module phase;

• the ABoxModule class is the coordinator of the ABox module phase;

• the LowLevelCoordinator class is the coordinator of the low-level mapping phase;

• the EnrichmentCoordinator class is the coordinator of the enrichment phase;

• the LAExtractor class is the coordinator of the LA extraction phase.

The entire project obeys the rules dictated by the MVC (Model-View-Controller) pattern. This is emphasized
by the fact that the coordinator of each phase makes use of a central model, represented by the homonym class
Model (which contains the PoSecCo ontology and several other data). A detailed description of these classes
is given in Section 3.

In order to promote the flexibility and extensibility of the LA Generation Service, the low-level mapping and en-
richment coordinators make use of a plug-in based approach. They offer the capability of adding new modules
(i.e., low-level mappers and enrichment modules) by the means of an Eclipse extension point. By implementing
two special abstract classes (LowLevelMapper and EnrichmentModule) the developer can extend the
functionalities of the LA Generation Service without modifying the implementation source code. This topic is
discussed further in Section 4.

Plug-ins

Since the Eclipse framework was adopted, all the LA Generation Service code is split into a set of specialized
plug-ins, that are:

4 / 25

http://eclipse.org/
http://eclipse.org/rap/
http://www.eclipse.org/gef/zest/
http://owlapi.sourceforge.net/
http://clarkparsia.com/pellet/
http://hermit-reasoner.com/
http://www.derivo.de/en/resources/sparql-dl-api.html
http://jgrapht.org/

LA Generation Service - programmer manual

eu.posecco.sdss.lageneration.tbox
includes the TBoxModule class and all the sources needed to implement the TBox module phase

eu.posecco.sdss.lageneration.abox
includes the ABoxModule class and all the sources needed to implement the ABox module phase

eu.posecco.sdss.lageneration.lowlevel
includes the LowLevelCoordinator, the LowLevelMapper classes and all the sources needed to
implement the low-level mapping phase but the low-level mappers

eu.posecco.sdss.lageneration.lowlevel.modules
includes the standard low-level mappers

eu.posecco.sdss.lageneration.lowlevel.ui
includes the UI for the low-level mapping phase

eu.posecco.sdss.lageneration.enrichment
includes the EnrichmentCoordinator, the EnrichmentModule classes and all the sources needed
to implement the enrichment phase but the enrichment modules

eu.posecco.sdss.lageneration.enrichment.modules
includes the standard enrichment modules

eu.posecco.sdss.lageneration.enrichment.ui
includes the UI for the enrichment phase

eu.posecco.sdss.lageneration.laextraction
includes the LAExtractor class and all the sources needed to implement the LA extraction phase

eu.posecco.sdss.lageneration.laextraction.ui
includes the UI for LA extraction phase

eu.posecco.sdss.lageneration.ui
includes the perspective, the views and all the related sources

eu.posecco.sdss.lageneration.model
includes the Model class and all its related sub-types

These plug-ins are extensively intertwined amongst them as shown in the dependency graph depicted in Fig-
ure 3.

Figure 3: The LA Generation Service plug-ins dependencies.

5 / 25

LA Generation Service - programmer manual

In addition, these plug-ins make use of several classes, enumeration and types contained in a number of other
SDSS-wide bundles:

eu.posecco.sdss.common
includes several facilities used to pass data (e.g., the PoSecCo ontology) to the other SDSS components
such as the Infrastructure Configuration Service.

eu.posecco.sdss.images
includes all the icons and images

eu.posecco.sdss.io
includes several MoVE utility classes

eu.posecco.sdss.libraries
includes all the external libraries needed by the LA Generation Service

eu.posecco.sdss.ontologies
includes all the classes and types needed to manipulate the ontologies

eu.posecco.sdss.ui
includes a number of UI-related classes

eu.posecco.sdss.util
includes a number of UI-independent utility classes.

The dependencies amongst these other plug-ins is depicted in Figure 4.

Figure 4: The SDSS-wide and LA Generation Service plug-ins dependencies.

Metrics

Source code metrics are an effective way to intuitively understand the size and complexity of a piece of software.
For instance, the Table 2 shows a series of code statistics related to the LA Generation Service.

In addition the Tables 3 and 4 lists a set of metrics related to the PoSecCo ontology immediately after the ABox
phase (that is the ontology still without the LAs).

6 / 25

LA Generation Service - programmer manual

Metric Value

Number of plug-ins 19
Number of packages 115
Number of classes 267
Number of methods 732
Number of lines 20116

McCabe cyclomatic complexity 1.93

Table 2: The source code metrics.

Metric Value

Number of axioms 5643
Number of classes 333
Number of object properties 204
Number of data properties 76
Number of individuals 767

DL expressivity SOIF(D)

Table 3: The PoSecCo ontology metrics after the ABox phase for the year 2 landscape (Thales).

Metric Value

Number of axioms 5621
Number of classes 325
Number of object properties 259
Number of data properties 110
Number of individuals 859

DL expressivity SIF(D)

Table 4: The PoSecCo ontology metrics after the ABox phase for the year 3 landscape (ATOS).

7 / 25

LA Generation Service - programmer manual

3 Public APIs

This section briefly describes the public methods of the most important classes of the LA Generation Service.
For a more detailed description of all the available types please refer to the code Javadoc documentation.

The model

The LA Generation Service model is represented by the homonym class Model. This class is contained in the
eu.posecco.sdss.lageneration.model plug-in and its public methods are depicted in Figure 5.

Figure 5: The Model class API.

This class uses several additional classes and enumerations to store the current LA Generation Service model.
For instance, the following types are frequently encountered in the code:

• the Ontology class is used to store the PoSecCo ontology and provides a set of methods for reading
and manipulating its content3;

• the Status specifies the current phase of the refinement process (e.g., enrichment, LA extraction, . . .).

The Model class exposes the following public methods:

Model(String name)

creates a new empty model with the specified name

Collection<LogicalAssociation> getLogicalAssociations()
retrieves the refined logical associations

String getName()
retrieves the model name

Ontology getOntology()
retrieves the current PoSecCo ontology

3This class is contained in the eu.posecco.sdss.ontologies plug-in.

8 / 25

LA Generation Service - programmer manual

Collection<RefinableItem> getRefinableItems()
retrieves the items (policies and links) selected for the refinement

Collection<RefinableRoot> getRefinableRoots()
retrieves the items (policies and links) that can be refined

Status getStatus()
retrieves the current refinement phase

String getWorkingDirectory()
retrieves the working directory, that is where the output files will be written

void reset()
resets the model to its initial empty state

void setLogicalAssociations(Collection<LogicalAssociation> las)

sets the refined logical associations

void setName(String name)

sets the model name

void setOntology(Ontology ontology)

sets the current PoSecCo ontology

void setRefinableItems(Collection<RefinableItem> items)

sets the items (policies and links) selected for the refinement

void setRefinableRoots(Collection<RefinableRoot> roots)

sets the items (policies and links) that can be refined

void setStatus(Status status)

sets the current refinement phase

void setWorkingDirectory(String workingDirectory)

sets the working directory

Note that a valid Model instance must be passed to the phase coordinators in order to obtain a correct and
consistent output.

TBox module

The TBox module coordinator is represented by the class TBoxModule. This class is contained in the
eu.posecco.sdss.lageneration.tbox plug-in and its public methods are depicted in Figure 6.

This class makes use of the enumeration ReasonerType which contains a list of all the supported ontology
reasoners4.

The TBoxModule class exposes the following public methods:

TBoxModule(Model model)

creates the module using the specified model

void merge(ReasonerType reasonerType)

creates the initial PoSecCo TBox ontology, that is an ontology without the landscape and policy infor-
mation, and initializes the reasoner

9 / 25

LA Generation Service - programmer manual

Figure 6: The TBoxModule class API.

Figure 7: The ABoxModule class API.

ABox module

The ABox module coordinator is represented by the class ABoxModule. This class is contained in the
eu.posecco.sdss.lageneration.abox plug-in and its public methods are depicted in Figure 7.

The ABoxModule class exposes the followin public methods:

ABoxModule(Model model)

creates the module using the specified model

void analyze()
analyzes the ontology in order to detect the available refinable items

boolean merge()
fills the PoSecCo ontology with the landscape and policy information, reading them from a local copy
(and returning false) or MoVE (and returning true)

4This enumeration is declared in the eu.posecco.sdss.ontologies plug-in and can be used to select the Pellet or the Hermit
reasoners.

10 / 25

LA Generation Service - programmer manual

Low-level mapper

The low-level mapper coordinator is represented by the class LowLevelCoordinator. This class is con-
tained in the eu.posecco.sdss.lageneration.lowlevel plug-in and its public methods are depicted in Figure 8.

Figure 8: The LowLevelCoordinator class API.

This class uses a number of low-level mappers, that are modules specialized in finding the relationships of
an IT level instance toward a specific infrastructure level concept. The creation of new low-level mappers is
discussed in Section 4. The LA Generation Service already contains the following default mappers (declared
in the eu.posecco.sdss.lageneration.lowlevel.modules plug-in):

• the mapper toward the IT interfaces;

• the mapper toward the interfaces;

• the mapper toward the IT resources;

• the mapper toward the nodes.

The LowLevelCoordinator class exposes the following public methods:

LowLevelCoordinator(Model model, MissingInfoUI ui)

creates the coordinator

void execute(String name)

executes the low-level mapper called name

void executeAll()
executes all the low-level mappers

This class uses the interface MissingInfoUI which represents a UI which should ask the user for a missing
relationship between two landscape elements (e.g., which are the computers used by a specific user). Its public
methods are depicted in Figure 9.
The MissingInfoUI interface exposes only one method:

void open(Model model, Set<ObjectPropertyAssertion> info)

this method is called by the low-level coordinator whenever a set of missing relationships is found and
its job is to fill the missing information in the parameter info

11 / 25

LA Generation Service - programmer manual

Figure 9: The MissingInfoUI class API.

The ObjectPropertyAssertion class represents a missing relationship between two individuals in the
PoSecCo ontology. Its public methods are depicted in Figure 10.

Figure 10: The ObjectPropertyAssertion class API.

This class exposes the following public methods:

ObjectPropertyAssertion(OntologyIndividual subject, OntologyClass clazz,

OntologyObjectProperty property, boolean inverse)

creates the missing relationship assertion

boolean isInverseProperty()
indicates if the assertion regards the property or its inverse

OntologyClass getObjectClass()
retrieves the object class of the assertion

Collection<OntologyIndividual> getObjects()
retrieves the objects of the assertion or null if they are missing

OntologyObjectProperty getProperty()
retrieves the object property of the assertion

OntologyIndividual getSubject()
retrieves the subject of the assertion

void setObjects(Collection<OntologyIndividual>)
sets the objects of the assertion

12 / 25

LA Generation Service - programmer manual

Enrichment

The enrichment coordinator is represented by the class EnrichmentCoordinator. This class is contained
in the eu.posecco.sdss.lageneration.enrichment plug-in and its public methods are depicted in Figure 11.

Figure 11: The EnrichmentCoordinator class API.

This class uses a set of enrichment modules, that are bundles used to perform a number of inferences and de-
ductions on the landscape contained in the PoSecCo ontology. Their creation is discussed in detail in Section 4.
All the default enrichment modules are declared in the eu.posecco.sdss.lageneration.enrichment.modules
plug-in and are:

• the data model through SSH aggregation discoverer, which infer if a connection torward a data model
should be protected by using SSH;

• the filtering zones aggregation discoverer, which detect the filtering zones5;

• the unused objects smart classifier, which find the used and unused IT objects;

• the tunnelling zones aggregation discoverer, which detect the tunnelling zones6;

• the WS-Security links classifier smart classifier, which infer if a link should be protected using the WS-
Security technology.

The EnrichmentCoordinator class exposes the following public methods:

EnrichmentCoordinator(Display display, Model model,

SmartClassifierValidationUI ui1, AggregationDiscovererValidationUI ui2)

creates the coordinator

void execute(EnrichmentModuleManifest module, boolean validate)

executes an enrichment module and open the validation UI if requested

Collection<EnrichmentModuleManifest> getEnrichmentModules()
retrieves all the available enrichment modules

The enrichment coordinator class make use of the two interfaces SmartClassifierValidationUI and
AggregationDiscovererValidationUI which represent two UIs which should report to the user the
results of an enrichment module and give him the possibility to abort the enrichment module deductions.

13 / 25

LA Generation Service - programmer manual

Figure 12: The SmartClassifierValidationUI class API.

The public methods of SmartClassifierValidationUI are depicted in Figure 12.

The SmartClassifierValidationUI interface exposes only one method:

void validate(Collection<RealizationResult> realizations)

this method is called by the enrichment coordinator if the validation UI for an enrichment module is
requested and its job is to allow the user to edit the content of the collection realizations that is the
result of the enrichment

The RealizationResult class represents a suggested realization (classification) of an ontology individual
by an enrichment module. Its public methods are depicted in Figure 13.

Figure 13: The RealizationResult class API.

The RealizationResult class exposes the following public methods:

RealizationResult(OntologyIndividual target, OntologyClass clazz,

boolean realized, String explanation)

creates the realization suggesting that the individual target should belong to the class clazz

String getExplanation()
retrieves the explanation of the realization

OntologyClass getSmartClass()
retrieves the target class of the realization

OntologyIndividual getTarget()
retrieves the target of the realization

5A filtering zone is a set of network nodes that can communicate together without crossing any filtering device.
6A tunnelling zone is a set of network nodes that lies at the end of a single IPsec tunnel.

14 / 25

LA Generation Service - programmer manual

boolean isRealized()
indicates if the realization is positive (the individual should belong to the class) or negative (the individual
should not belong to the class)

void setRealized(boolean realized)

sets the realization sign

The public methods of AggregationDiscovererValidationUI are depicted in Figure 14.

Figure 14: The AggregationDiscovererValidationUI class API.

The AggregationDiscovererValidationUI interface exposes only one method:

void validate(Collection<AggregationResult> aggregations)

this method is called by the enrichment coordinator if the validation UI for an enrichment module is
requested and its job is to allow the user to edit the content of the collection aggregations that is the
result of the enrichment

The AggregationResult class represents a suggested aggregation (set of individuals) by an enrichment
module. Its public methods are depicted in Figure 15.

Figure 15: The RealizationResult class API.

The AggregationResult class exposes the following public methods:

AggregationResult(String name, OntologyClass clazz,

Collection<AggregationPropertyAxiom> axioms)

creates the aggregation named name in the class clazz having the properties axioms

15 / 25

LA Generation Service - programmer manual

void addToOntology(Ontology ontology)

adds the current result to an ontology

void disableAggregation()
disables this result

void enableAggregation()
enables this result

boolean isAggregating()
detects if this result refers to an aggregating or aggregated individual7

OntologyClass getAggregationClass()
retrieves the aggregation class

String getAggregationName()
retrieves the aggregation name

Collection<AggregationPropertyAxiom> getPropertyAxioms()
retrieves the aggregation properties

void setAggregationName(String name)

sets the aggregation name

In addition, the EnrichmentCoordinator uses the EnrichmentModuleManifest class which rep-
resent all the information about a specific enrichment module.Its public methods are depicted in Figure 16.

Figure 16: The EnrichmentModuleManifest class API.

The EnrichmentModuleManifest class exposes the following methods:

EnrichmentModuleManifest(String name)

creates an enrichment module manifest for the module called name

String getName()
retrieves the name of the enrichment module

void execute(boolean validate)

executes the enrichment module and open the validation UI if requested

The LA extraction

The LA extraction coordinator is represented by the class LAExtractor. This class is contained in the
eu.posecco.sdss.lageneration.laextraction plug-in and its public methods are depicted in Figure 17.
It exposes the following public methods:

7An aggregating individual is an object that logically contains a set of aggregated individuals.

16 / 25

LA Generation Service - programmer manual

Figure 17: The LAExtractor class API.

LAExtractor(Model model)

creates a new LA extractor for the specified model

void analyze()
analyzes the ontology in order to detect the technologies and properties for generating the LAs

void extract()
extracts the LAs

17 / 25

LA Generation Service - programmer manual

4 Extending the tool

This section describes how extend the LA Generation Service functionalities by specifying the classes, exten-
sion points and files involved in the process.

Developing a new UI

The LA Generation Service modular system allows a developer to easily deploy it into a new user interface
since there is a marked division between the UI and the core (UI-independent) plug-ins.

The core plug-ins are:

• the eu.posecco.sdss.lageneration.tbox;

• the eu.posecco.sdss.lageneration.abox;

• the eu.posecco.sdss.lageneration.lowlevel;

• the eu.posecco.sdss.lageneration.lowlevel.modules;

• the eu.posecco.sdss.lageneration.enrichment;

• the eu.posecco.sdss.lageneration.enrichment.modules;

• the eu.posecco.sdss.lageneration.laextraction;

• the eu.posecco.sdss.lageneration.model.

While the following ones contains the default UI:

• the eu.posecco.sdss.lageneration.lowlevel.ui;

• the eu.posecco.sdss.lageneration.enrichment.ui;

• the eu.posecco.sdss.lageneration.laextraction.ui;

• the eu.posecco.sdss.lageneration.ui.

The only requirement is that the coordinators must be called in the right order and that the MissingInfoUI,
SmartClassifierValidationUI and AggregationDiscovererValidationUI interfaces for
the low-level mapping and enrichment must be implemented by a concrete class calling the right user inter-
face as needed.

This architecture allows the developer to easily integrate the LA Generation Service into its own system by
using a fully customized GUI, CUI or even by removing any UI in order to perform the policy refinement in a
totally automatic way.

Adding a new phase in the refinement

In the following paragraphs it is described how to add a new phase in the refinement process using the default
UI. The process can be substantially different if the developer uses a custom user interface.

There are several choices available to add a new job, but the simplest and easiest consists of the following steps:

Create a new status item Create a new item in the Status enumeration that will identify the new stage. The
Status enumeration is located in the eu.posecco.sdss.lageneration.model plug-in.

18 / 25

LA Generation Service - programmer manual

Create a new Eclipse job Create a new Eclipse job or use the Phase8 class which contains the code to be
executed. The developer is encouraged to use one of these classes so that the new code can be launched
in a separated thread in order to avoid freezing the UI during its execution. The only requirement is that
the job must use the setStatus() method on a Model instance to signal the end of the phase.

Modify the automatic process Modify the view defined in the LAGenerationView class, located in the
eu.posecco.sdss.lageneration.ui plug-in, by editing the selection listener of the doAllButton field.
This is needed in order to execute the new phase when the user choose the automatic process option.

Modify the manual process Add a new control (e.g., a new hyperlink) and a selection listener in the class
LAGenerationView that will execute the new phase. The initDataBindings() method should
also be modified to enable or disable the new control accordingly to the model status. This is needed in
order to execute the new phase when the user choose the manual process option.

To accomplish these modifications the developer needs at least a basic understanding of the Eclipse framework
and the SWT/RWT libraries.

Adding new low-level mappers

A low-level mapper is a special module that maps an IT level object to its infrastructure layer counterpart. In
order to add a new low-level mapper the developer must perform two tasks:

• adding a new extension to the extension point eu.posecco.sdss.lageneration.lowlevel.modules;

• create a new sub-class of the class LowLevelMapper that will contains the module code.

Once performed these steps, the module is automatically recognized and registered in the LA Generation Ser-
vice without touching its internal source code. When the tool is launched, the new mapper is executed together
with the default ones.

The eu.posecco.sdss.lageneration.lowlevel.modules extension point

The eu.posecco.sdss.lageneration.lowlevel.modules extension point exhibits the structure graphically de-
picted in Figure 18.

Figure 18: The eu.posecco.sdss.lageneration.lowlevel.modules extension point attributes.

This extension point defines the element lowLevelModule which represent a low-level mapper by exposing the
following attributes:

name : String
the name of the low-level mapper

class : LowLevelMapper
the class implementing the low-level mapper

8This class is a custom extension of org.eclipse.core.runtime.jobs.Jobs and it is contained in the
eu.posecco.sdss.util plug-in.

19 / 25

LA Generation Service - programmer manual

The LowLevelMapper class

A low-level mapper is represented by the abstract class LowLevelMapper. This class is contained in the
eu.posecco.sdss.lageneration.lowlevel plug-in and its public methods are depicted in Figure 19.

Figure 19: The LowLevelMapper class API.

The LowLevelMapper class exposes only one public method:

void map(Model model, MissingInfoUI ui)

performs the mapping and display the user interface ui requesting a missing relationship, if needed

The map() method should analyze the ontology and insert a series of property assertions between an IT level
object and an infrastructure level individual. Typically the property used is a child of refinestTo, such
as refinesToNode or refinesToITInterface. If a new object property needs to be added to the
ontology, please refer to the Section 4.

Adding new enrichment modules

An enrichment module is a special bundle that performs some inferences over the landscape elements. These
deductions will be used in the later stages of the refinement process to generate more secure logical associations.
In order to add a new enrichment module the developer must perform two tasks:

• adding a new extension to the extension point eu.posecco.sdss.lageneration.enrichment.modules;

• create a new sub-class of the class EnrichmentModule that will contains the module code.

Once performed these steps, the module is automatically recognized and registered in the LA Generation Ser-
vice. When the tool is launched, the new bundle should appear in the UI listing the available enrichment
modules.

The enrichment modules can be split in two different types:

• the smart classifiers try to classify a landscape element in a dynamically generated class, called a smart
class (e.g., classification of a service as a public service);

• the aggregation discoverers find aggregations of landscape elements, that are set of individuals sharing
some common feature (e.g., detecting the filtering zones).

20 / 25

LA Generation Service - programmer manual

Figure 20: The eu.posecco.sdss.lageneration.enrichment.modules extension point attributes.

The eu.posecco.sdss.lageneration.enrichment.modules extension point

The eu.posecco.sdss.lageneration.enrichment.modules extension point exhibits the structure graphically
depicted in Figure 20.

This extension point defines the two elements: smartClassifier and aggregationDiscoverer.
The smartClassifier element represents a smart classifier and exposes the following attributes:

name : String
the name of the smart classifier

class : SmartClassifier
the Java class implementing the smart classifier

A smart classifier must also declare the set of smart classes which will fill by defining a set of the sub-elements
of type outputSmartClass which exposes the following attributes:

equivalentTo : String
an expression, that can be empty, which declares the equivalent classes of the smart class — it can be a
full qualified class name, a short name without the IRI or a Manchester syntax expression

name : String
the full qualified name of the smart class with its IRI

subClassOf : String
an expression, that can be empty, which declares the super-classes of the smart class — it can be a full
qualified class name, a short name without the IRI or a Manchester syntax expression

The aggregationDiscoverer element represents an aggregation discoverer and exposes the following attributes:

name : String
the name of the aggregation discoverer

class : SmartClassifier
the Java class implementing the aggregation discoverer

An aggregation discoverer must also declare the set of aggregation classes which will fill by defining a set of
the sub-elements of type outputAggregationClass which exposes the following attributes:

21 / 25

LA Generation Service - programmer manual

equivalentTo : String
an expression, that can be empty, which declares the equivalent classes of the aggregation class — it can
be a full qualified class name, a short name without the IRI or a Manchester syntax expression

name : String
the full qualified name of the aggregation class with its IRI

subClassOf : String
an expression, that can be empty, which declares the super-classes of the aggregation class — it can be a
full qualified class name, a short name without the IRI or a Manchester syntax expression

In addition, an aggregation class can also express a set of properties that will be used by the enrichment module
by defining a set of aggregationProperty sub-elements which exposes the following attributes:

name : String
the full qualified name of the aggregation property with its IRI

subPropertyOf : String
an expression, that can be empty, which declares the super-property of the aggregation property

equivalentTo : String
an expression, that can be empty, which declares an equivalent relation of the aggregation property

isObjectProperty : boolean
a boolean indicating if the aggregation property is an object or data property

inverseOf : String
an expression, that can be empty, which declares the inverse relation of the aggregation property

propertyChain : String
an expression, that can be empty, which declares a property chain that will be used to infer the aggregation
property

description : String
an optional human-readable description of the aggregation property

Note that the enrichment coordinator will automatically create the smart and aggregation classes, so the only
job of the enrichment module is to fill them as it seems fit.

The SmartClassifier class

A smart classifier is represented by the abstract class SmartClassifier which extends the base class
EnrichmentModule. This class is contained in the eu.posecco.sdss.lageneration.enrichment plug-in
and its public methods are depicted in Figure 21.

This class exposes the following public methods:

void add(OntologyIndividual individual, OntologyClass clazz)

effectively add the individual individual to the class clazz

Collection<RealizationResult> collect()
retrieves the list of the suggested realizations

The collect() method should analyze the ontology and return the suggested classification for a number of
ontology individuals, while the add() should effectively add these individuals to a specific class. Note that
for performances reasons the collect() method should only read the PoSecCo ontology.

22 / 25

LA Generation Service - programmer manual

Figure 21: The SmartClassifier class API.

The AggregationDiscoverer class

An aggregation discoverer is represented by the abstract class AggregationDiscoverer which extends
the base class EnrichmentModule. This class is contained in the eu.posecco.sdss.lageneration.enrichment
plug-in and its public methods are depicted in Figure 22.

Figure 22: The AggregationDiscoverer class API.

This class exposes only one public methods:

Collection<AggregationResult> collect()
retrieves the list of the suggested aggregations

The collect() method should analyze the ontology and return the suggested aggregation for a number
of ontology individuals. Note that for performances reasons the collect() method should only read the
PoSecCo ontology.

Modifying the PoSecCo ontology

The first two steps of the LA Generation Service (the TBox and ABox module phases) create the initial PoSecCo
ontology by merging together a set of smaller and independent ontologies. If the developer needs to modify the
ontology structure (i.e., in order to add a new object property), he must edit these elementary ontologies which
are stored in the eu.posecco.sdss.lageneration.model plug-in and in particular:

• all the TBox ontologies are located in the tbox directory;

• all the ABox ontologies are located in the abox directory.

23 / 25

LA Generation Service - programmer manual

In addition, the eu.posecco.sdss.lageneration.model plug-in contains the file xml/tbox.xml which de-
clares a set of axioms that are automatically inserted in the PoSecCo ontology by the TBox module. These
axioms are used to define a number of equivalence axioms in order to better merge together the TBox ontolo-
gies.

This file supports the following tags, defined by the XML schema listed in Listing 1:

classesEquivalence
declares an equivalence between two classes

objectPropertyEquivalence
declares an equivalence between two object properties

datPropertyEquivalence
declares an equivalence between two data properties

24 / 25

LA Generation Service - programmer manual

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="axioms" type="AxiomsType"></xsd:element>
<xsd:simpleType name="AxiomKindType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="classesEquivalence">
</xsd:enumeration>
<xsd:enumeration value="objectPropertiesEquivalence">
</xsd:enumeration>
<xsd:enumeration value="dataPropertiesEquivalence">
</xsd:enumeration>

</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="AxiomType">
<xsd:sequence>
<xsd:element name="first" type="xsd:string" minOccurs="1" maxOccurs="

1">
</xsd:element>
<xsd:element name="second" type="xsd:string" minOccurs="1" maxOccurs=

"1">
</xsd:element>
</xsd:sequence>
<xsd:attribute name="kind" type="AxiomKindType" use="required">
</xsd:attribute>

</xsd:complexType>
<xsd:complexType name="AxiomsType">

<xsd:sequence>
<xsd:element name="axiom" type="AxiomType" maxOccurs="unbounded"

minOccurs="1">
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Listing 1: The XML schema for the equivalence axioms file.

25 / 25

	Introduction
	Software architecture
	Implementation
	Plug-ins
	Metrics

	Public APIs
	The model
	TBox module
	ABox module
	Low-level mapper
	Enrichment
	The LA extraction

	Extending the tool
	Developing a new UI
	Adding a new phase in the refinement
	Adding new low-level mappers
	The eu.posecco.sdss.lageneration.lowlevel.modules extension point
	The LowLevelMapper class

	Adding new enrichment modules
	The eu.posecco.sdss.lageneration.enrichment.modules extension point
	The SmartClassifier class
	The AggregationDiscoverer class

	Modifying the PoSecCo ontology

