

Deliverable D3.2

FP7-ICT-2009-5 257103

June 2011

D3.2: webinos phase I device, network,

and server-side API specifications

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 2 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Project Number : FP7-ICT-2009-5 257103

Project Title : Secure WebOS Application Delivery Environment (webinos)

Deliverable Type : Public

Deliverable Number : D 3.2

Contractual Delivery Date : June, 30
th

, 2011

Actual Date of Delivery : June, 30
th

, 2011

Title of Deliverable : webinos phase I device, network, and server-side API specifications

Contributing Work Package : WP 3

Nature of Deliverable : Report

Editor : SonyEricsson

Authors : Fraunhofer FOKUS, Deutsche Telekom, ERCIM, Telecom Italia,

 TNO, BMW F+T, SonyEricsson., ISMB,

Document History

Version Date Author (Partner)
Remarks

0.9 01/07/2011 SonyEricsson Initial version created from Wiki

1.0 α 04/07/2011 Fraunhofer FOKUS Updated, Word-formatted version

 FP7-ICT-2009-5 257103

page: 3 of 396 D3.2: webinos phase I device, network, and server-side API specifications

Abstract

This deliverable covers the APIs to be implemented by a webinos device. According to the use cases and

requirements defined in WP2 and the common components introduced in task 3.1, task 3.2 has defined a set of

application programming interface specifications (APIs) to make the desired functionalities available to webinos

applications.

Due to earlier or ongoing standardization and implementation activities, e.g. within W3C and WAC, some needed

APIs are already specified and available in modern browsers. Other APIs have been specified but implementations

have not yet been established in existing browsers.Some APIs needed to fulfill webinos functionality do not yet

exist so these APIs have to be specified within the webinos project.

A key feature of webinos is the ability to discover services on remote devices and access these services using APIs.

For example, an application can use the core webinos Service Discovery API to search for a geolocation service on

another device and then access this service through the standard W3C Geolocation API.

The webinos APIs can be divided into a number of categories:

• Webinos base and generic objects/interfaces: For example the webinos core interface

• APIs for service discovery and remote API access: APIs allowing applications to discover other devices and

 services/applications on other devices and on network servers and access these remote services.

• HW Resources APIs: APIs allowing applications to access information and functionality relating to device HW

 resources such as GPS, camera, microphone, sensors, etc.

• Application Data APIs: APIs allowing applications read and write access to application capabilites such as contact

 items, calender information, messages, media files, etc.

• Communication APIs: APIs allowing applications to communicate with other applications in the same or another

 device.

• Application execution APIs: APIs allowing webinos applications to launch other webinos and native applications.

• User profile and context APIs: APIs allowing applications access to user profile data and user context.

• Security and Privacy APIs: APIs related to the security model for webinos

Note:

This Word/PDF linear document represents only a snapshot of the specification for the purpose of review as a

single document. The actual specification is located on the webinos redmine/Wiki. That version is the one relevant

for the work within the project. Due to the close interworking between the specification and the implementation

work packages in webinos, experience gained about gaps that need to be filled in the specification will be fed back

directly into the online specification. The Word/PDF document has been exported from the online version and

represents the status of the specification on June, 30
th

, 2011.

Keyword list:

webinos, specification, API, JavaScript, attestation, authentication, context, events, applauncher,

messaging, nfc, payment, sensors, discovery, tv, suerprofile, vehicle, webinoscore, widget, calendar,

contacts, device (status, interaction, orientation), file (reader, writer, directory), gallery, geolocation,

media capture

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 4 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Content

1. INTRODUCTION ... 8

2. ACKNOWLEDGEMENT .. 9

3. METHODOLOGY .. 9

4. API LANDSCAPE ... 10

World Wide Web Consortium (W3C) ... 10

Web Hypertext Application Technology Working Group (WHATWG) 12

Wholesale Application Community (WAC) .. 12

PhoneGap ... 12

Nokia/Symbian Web Runtime environment ... 12

5. API TYPES .. 13

JavaScript APIs ... 13

Using HTML-elements .. 13

Using DOM events ... 14

Using REST .. 14

6. API INVESTIGATIONS .. 14

HW Resource APIs .. 15

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 5 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

APIs for which no existing standards/implementations exist .. 29

Application Data APIs... 35

Communication APIs .. 43

Application execution APIs... 48

Discovery APIs ... 58

Security and Privacy APIs .. 65

User profile and context APIs ... 67

7. TOOLS FOR API SPECIFICATIONS ... 71

8. JS API DESIGN PATTERNS AND GUIDELINES ... 72

9. LIST OF WEBINOS PHASE 1 API SPECIFICATIONS ... 73

10. APIS SPECIFIED BY WEBINOS ... 76

API Summary .. 76

APIs: The attestation module ... 78

APIs: The authentication module .. 87

APIs: The context module ... 94

APIs: The events module .. 105

APIs: The AppLauncher module ... 128

APIs: The messaging module .. 136

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 6 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

APIs: The nfc module .. 166

APIs: The payment module .. 187

APIs: The sensors module ... 202

APIs: The discovery module ... 217

APIs: The tv module .. 235

APIs: The userprofile module .. 246

APIs: The vehicle module ... 257

APIs: The webinoscore module .. 289

APIs: The widget module .. 291

11. REFERRED APIS USED BY WEBINOS ... 307

API Summary .. 307

APIs: The CalendarWrapper module ... 309

APIs: The ContactsWrapper module .. 324

APIs: The device status module ... 340

APIs: Device status vocabulary .. 344

APIs: The device interaction module ... 355

APIs: The device orientation module ... 358

APIs: The file reader module ... 361

APIs: The file writer module .. 364

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 7 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

APIs: The file system module ... 367

APIs: The gallery module ... 373

APIs: The geolocation module .. 391

APIs: The media capture module... 394

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 8 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

1. Introduction
According to the use cases and requirements defined in WP2 and the common components introduced

in task 3.1, task 3.2 has defined a set of application programming interface specifications (APIs) to make

the desired functionalities available to webinos applications.

Due to earlier or ongoing standardization and implementation activities, e.g. within W3C and WAC,

some needed APIs are already specified and available in modern browsers. Other APIs have been

specified but implementations have not yet been established in existing browsers and some APIs

needed to fulfill webinos functionality do not yet exist so these APIs have to be specified within the

webinos project.

A key feature of webinos is the ability to discover services on remote devices and access these services

using APIs. For example, an application can use the core webinos Service Discovery API to search for a

geolocation service on another device and then access this service through the standard W3C

Geolocation API.

The webinos APIs can be divided into a number of categories:

 Webinos base and generic objects/interfaces: For example the webinos core interface

 APIs for service discovery and remote API access: APIs allowing applications to discover other

devices and services/applications on other devices and on network servers and access these

remote services.

 HW Resources APIs: APIs allowing applications to access information and functionality relating

to device HW resources such as GPS, camera, microphone, sensors, etc.

 Application Data APIs: APIs allowing applications read and write access to application

capabilites such as contact items, calender information, messages, media files, etc.

 Communication APIs: APIs allowing applications to communicate with other applications in the

same or another device.

 Application execution APIs: APIs allowing webinos applications to launch other webinos and

native applications.

 User profile and context APIs: APIs allowing applications access to user profile data and user

context.

 Security and Privacy APIs: APIs related to the security model for webinos.

All webinos API specifications are available here: webinos Device APIs

Given the sensitive nature of the data to which these APIs grant access, the APIs specified are either

secure and privacy-enabling by design or implemented so that access to APIs are controlled by the

webinos security framework specified in WP 3.5.

http://www.w3.org/
http://public.wholesaleappcommunity.com/redmine/embedded/wac2pubrev/index.html
http://dev.webinos.org/specifications/draft/

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 9 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

The API development works in collaboration with WP8.1 to enable API standardizations on the one hand

and to make use of existing specifications on the other hand.

2. Acknowledgement

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No

257103.

For more information about this programme, see: http://cordis.europa.eu/fp7/ict/ssai/

3. Methodology

The methodology used in WP 3.2 was according to the following steps:

1. Identify needed APIs based on requirements:

 Use cases and requirements defined in WP 2 were analyzed in order to identify needed APIs.

2.Identify needed APIs based on webinos architecture:

 In parallel with the ongoing specification of the webinos architectural platform elements in WP

3.1 needed APIs were identified.

3. API investigations:

Based on step 1 and 2 existing APIs from W3C, WAC and elsewhere were investigated. The result of

these investigations were:

 Description of referred APIs from W3C, WAC or elsewhere that can be used by webinos without
modification.

 Description of referred APIs from W3C, WAC or elsewhere that can be used by webinos with
modifications.

 Description of new APIs that need to be specified within the webinos project.

4. API specifications:

 Creation of new webinos API specifications.

 Creation of specifications of webinos modifications/extensions to existing APIs where needed.

 Creation of webinos "wrapper" specifications for referred API specifications.

http://cordis.europa.eu/fp7/ict/ssai/

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 10 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

5. Prototyping and demos

 Creation of API stubs and small demo applications to test API applicability for developers.

Further work will be performed within WP 8.1 to propose new webinos specifications and modified

standard specifications to relevant standardization organizations.

4. API landscape

This section is an overview of existing API standardization and collaboration projects.

World Wide Web Consortium (W3C)

The World Wide Web Consortium is an international community where member organizations, a full-

time staff, and the public work together to develop Web standards. W3C's mission is "to lead the Web

to its full potential". W3C is the most important organization for standardizing Web technology and an

extensive set of APIs for Web application developers have been specified by W3C.

W3C Web Applications (Web Apps) Working Group

The W3C Web Applications WG provides specifications that enable improved client-side

application development on the Web, including specifications both for application programming

interfaces (APIs) for client-side development and for markup vocabularies for describing and

controlling client-side application behavior.

This WG hosts a number of API specifications that are core for the Web as an application execution

environment. APIs that are implemented in all browers are for example XMLHTTPRequest and

Document Object Model (DOM). Other important APIs created by the Web Apps WG that are deployed

in modern browers are for example Web Workers, Web Messaging, File Reading, Server-Sent Events and

Web Sockets. The Web Apps WG has also created a set of specifications for installable Web applications,

Web Widgets, which are core specifications in Web runtime platforms such as WAC.

See Web Apps WG charter and Web Apps WG Web Site. A full list of the WG's publications and their

status can be found at Web Apps WG publications.

W3C Device APIs and Policy (DAP) Working Group
The mission of the Device APIs and Policy Working Group is to create client-side APIs that enable the

development of Web Applications that interact with device hardware, services and applications such as

the camera, microphone, system sensors, native address books, calendars and native messaging

applications. Devices in this context include desktop computers, laptop computers, mobile Internet

devices (MIDs), cellular phones, TVs, cameras and other connected devices.

A full list of API specifications created by the WG is here offers the DAP Roadmap.

http://www.w3.org/
http://www.wacapps.net/web/portal/wac-2.0-spec
http://www.w3.org/2010/webapps/charter/Overview.html
http://www.w3.org/2008/webapps/
http://www.w3.org/2008/webapps/wiki/PubStatus
http://www.w3.org/2009/dap/#roadmap

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 11 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

The DAP specifications that so far has got most implementation attention are the Contacts API and

HTML Media Capture API. The latter is supported in Android 3.0, for instance and the Contacts API has

experimental implementations.

Previously a framework for the expression of security policies that govern access to security-critical APIs

was included in the deliverables of the WG but according to the new proposed DAP charter this is left

out of the DAP WG deliverables. It is proposed to rename the WG to "Device APIs Working Group".

However, this does not mean that the WG no longer addresses privacy and security as the group also

aims at crafting APIs that are both secure and privacy-enabling by design, based on the current Web

browser security model. This entails reusing existing browser-based security metaphors where they

apply and looking into innovative security and privacy mechanisms where they don’t.

Furthermore, the new charter expands the set of APIs that should be delivered by the WG. For example

APIs for device and service discovery is now inluded in the charter.

DAP's public web site is here: W3C DAP.

W3C Geolocation Working Group
The mission of the Geolocation Working Group is to define a secure and privacy-sensitive Geolocation

API for accessing location information from built-in GPS receiver or network positioning information as

well as a Device Orientation Event specification for using device orientation information originating from

built-in accelerometer, magnetometer and gyro.

The Geolocation API is currently implemented in major modern Web browsers and according to public

information the Device Orientation Event specification is at least under implementation for iOs, Android

and Chrome.

See the Geolocation WG Charter.

W3C Web Real-Time Communications (Web-RTC) Working Group
The mission of the recently formed Web Real-Time Communications Working Group is to define client-

side APIs to enable real-time communications in Web browsers. APIs specified by the WG will enable

streaming access to device capabilities, e.g camera and microphone, and API functions for establish

peer-to-peer connections between Web browsers, independent of the network protocols used to

establish the connections between peers.

See Web-RTC Working Group Charter and Web-RTC Web site

Other W3C actvities creating APIs for Web applications

 The HTML5 specification contains a number of APIs for Web applications, e.g. an API for playing
of video and audio to be used with the video and audio elements, an API that enabling offline
Web applications and a drag & drop API.

 The Web Notifications API is an API for displaying simple notifications to the user.

http://www.w3.org/2010/11/DeviceAPICharter.html
http://www.w3.org/2009/dap/
http://www.w3.org/2008/geolocation/charter/charter-2
http://www.w3.org/2011/04/webrtc-charter.html
http://www.w3.org/2011/04/webrtc/
http://www.w3.org/TR/html5/
http://www.w3.org/TR/notifications/

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 12 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 The Web Events Working Group develops specifications for physical multitouch interface events.

 The HTML Speech Incubator Group investigates the feasibility of integrating speech technology
in HTML5.

Web Hypertext Application Technology Working Group (WHATWG)
WHATWG is a community of people interested in evolving the Web. It focuses primarily on the

development of HTML and APIs needed for Web applications. The WG was founded by individuals of

Apple, Mozilla Foundation, and Opera Software in 2004, due to concerns on the W3C’s direction with

HTML and XHTML.

WHATWG has provided major input to the W3C HTML5 specification as well as to other specifications

relating to Web applications, e.g. Web Workers , Web Storage, the Web Sockets API, and Server-Sent

Events.

Wholesale Application Community (WAC)
The Wholesale Applications Community is an open, global alliance formed from the world's leading

telecoms operators. WAC will unite a fragmented applications marketplace and create an open industry

platform that benefits the entire ecosystem, including applications developers, handset manufacturers,

OS owners, network operators and end users.

WAC is based on W3C Web technology such as HTML5, JavaScript, DOM and Web widgets. In addition

WAC has specified a set of APIs providing access to hardware and software device capabilities as well as

a security policy framework to control the access to the sensitive device APIs.

Full list of WAC specifications can be found here:

 WAC 1.0

 WAC 2.0

PhoneGap
PhoneGap allows developers to build applications with Web technology that are wrapped into native

applications suited for the target platform giving access to APIs provided by the native platform. The

following table lists the APIs available for the platforms supported by PhoneGap: PhoneGap supported

feature. For API documentation see PhoneGap API reference.

Nokia/Symbian Web Runtime environment
The Nokia/Symbian Web Runtime provides an application environment for Web widgets that includes a

set of device APIs (Symbian Platform Services 2.0).

http://www.w3.org/2010/webevents/
http://www.w3.org/2005/Incubator/htmlspeech/
http://www.whatwg.org/
http://www.wacapps.net/web/portal
http://specs.wacapps.net/1.0/dec2010/
http://www.wacapps.net/web/portal/wac-2.0-spec
http://www.phonegap.com/
http://www.phonegap.com/features
http://www.phonegap.com/features
http://docs.phonegap.com/
http://library.forum.nokia.com/index.jsp?topic=/Web_Developers_Library/GUID-A359B122-CB52-492C-8C0D-0062ED0A6A89.html
http://library.forum.nokia.com/index.jsp?topic=/Web_Developers_Library/GUID-A359B122-CB52-492C-8C0D-0062ED0A6A89.html

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 13 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

5. API types

JavaScript APIs
A JavaScript API is the most common way to provide Web application access to device hardware and

software resources. Web Interface Description Language is used to specify JavaScript APIs.

A typical example of a JavaScript API is the W3C Contacts API. The usage of the "contacts.find" method is

examplified below:

Perform an address book search. Obtain the 'name' and 'emails' properties and initially filter the list to

Contact records containing 'Bob':

navigator.contacts.find(['name', 'emails'], successCallback, errorCallback,

{filter: 'Bob'});

The example above illustrates an asynchronous JavaScript method, which is very common for JS device

APIs. Asynchronous methods return immediately and notify the caller at some point in the future of the

results via callback methods. Methods that may take a long time to be executed or that may be subject

to security prompt must be defined as asynchronous methods. The successCallback above is a function

to be invoked in case of success and the errorCallback is a function to call when the asynchronous

operation fails.

Using HTML-elements
In some cases access to device resources can be provided through a simple html-element. One example

is the W3C HTML Media Capture specification. This specification states that if an input element in the

File Upload state contains accept attribute with values image/*, audio/*, or video/*, the user agent can

invoke a file picker that allows respectively the user to take a picture, record a sound file, or record a

video in addition to selecting an existing file from the file system. Furthermore, a new “capture”

attribute may be added to the input element. This attribute gives a hint to the user agent on the source

of the input. The “capture” attribute can take the values camera, camcorder, microphone and

filesystem.

For example, the following code indicates that the user is expected to upload an image from the device

camera:

< input type="file" accept="image/* " capture="camera" id="capture" >

When rendering this code the user agent will open the camera viewfinder and allow the user to take a

picture.

HTML "file-picker" based access to device resources is very straightforward and intuitive for users and

provide for "implicit user consent" as the user must provide a tangible action to allow access to the

requested resource. For example navigating to a folder in the file system and selecting a file or using the

camera viewfinder and pressing the shutter button to take a picture.

http://www.w3.org/TR/WebIDL/
http://dev.w3.org/2009/dap/contacts/
http://dev.w3.org/2009/dap/camera/

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 14 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Using DOM events
For providing Web applications access to data that is frequently updated, for example data from sensors

in the device, a DOM event based interface is often applicable. Examples are the W3C DeviceOrientation

Event Specification and the W3C Battery Status Event Specification. Several new webinos APIs are also

DOM event based.

An event based API is defined by adding attributes to the DOM event interface. For example, the

DeviceOrientation Event Specification defines an "deviceorienationevent", which has three attributes

for device orientation, alpha angle, beta angle and gamma angle.

A Web application can register to listen to DOM events using the addEventListener method. For

example, registering to receive deviceorientation events could be done with the code below:

window.addEventListener("deviceorientation", function(event) {

 // code for processing the the device orientation event data, i.e.

event.alpha, event.beta and

 // event.gamma

 }, true);

The second parameter is a method that is called whenever an event occurs of type "deviceorientation".

Using REST
REST (Representational State Transfer) APIs are frequently used on the Web. Such an API is specified as

a URI and the requested resource/service is accessed through the standard HTTP methods GET, POST,

PUT, DELETE.

A simple example is a Twitter API for retrieving the 20 most recent statuses. In this example the

requested data is returned in JSON format.

http://api.twitter.com/1/statuses/public_timeline.json

One major advantage with REST APIs is that a requested resource/service could be situtated

"anywhere", in the cloud or in the device, but still be accessed with the same API. By implementing

access to local resources/services through “Virtual Local Web Servers” REST APIs could also be used to

access local in-device resources/services.

Furthermore REST is stateless, which facilitates scalable solutions so that many users can be supported.

If coding gets complicated when REST APIs are used then JavaScript "wrapper" methods can be created

to facilitate for developers. These "wrapper" methods do not have to be standardized and could be

provided by exstablished JavaScript library/framework providers.

6. API investigations
This section contains the results of the investigations on APIs of the different categories and acts as

background information to the APIs supported by webinos.

http://dev.w3.org/geo/api/spec-source-orientation.html
http://dev.w3.org/geo/api/spec-source-orientation.html
http://dev.w3.org/2009/dap/system-info/battery-status.html
http://www.w3.org/TR/2011/WD-DOM-Level-3-Events-20110531/#interface-Event
http://api.twitter.com/1/statuses/public_timeline.json

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 15 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Based on webinos requirements/use cases and architecture needed APIs are identified. Potential

existing APIs from W3C, WAC and elsewhere are investigated and analyzed. If no existing APIs that could

fulfill the webinos requirement is found high level requirements on a new API to be specifed within the

webinos project are stated.

HW Resource APIs

Description
This section contains investigation results on APIs for access to HW related resources.

Resources
Primary contributor/editor for this API category: Telecom Italia

Supporting contributors/reviewers: SEMC / AmbiSense / Fraunhofer / BMW

APIs based on existing standards/implementations

Device Orientation API

Description: Information about the physical orientation of a device, typically implemented by using

information from accelerometer, magnetometer and gyro.

Requirement/architectural reference: CAP-DEV-SEMC-009:webinos SHALL provide means for

applications to access device physical orientation

Phase: webinos phase 1

Webinos responsible: Claes Nilsson/SEMC

Candidate API Short Description
Implementation

Status
Gaps Notes Decision

W3C

DeviceOrientation

Event

Two DOM event types

that provide information

about the physical

orientation of a hosting

device.

- The first event is a

simple, high-level source

of information about the

physical orientation of a

device, expressed as

device rotation in angles

around 3 different axes.

While the spec is

agnostic to the source of

information, this is

iOS 4.2

Android 3.0

Chrome 7

Opera Mobile for

Android

(experimental)

No gaps identified

webinos

will use

this API

http://dev.w3.org/geo/api/spec-source-orientation.html
http://dev.w3.org/geo/api/spec-source-orientation.html
http://dev.w3.org/geo/api/spec-source-orientation.html

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 16 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

typically implemented by

combining information

from an accelerometer

and a magnetometer.

- The second event

provides direct access to

motion data from an

accelerometer and

gyroscope and is

intended for more

sophisticated

applications.

Acceleration is expressed

in m/s2 and rotation rate

is expressed as

degrees/s.

WAC 2.0 Device

APIs: The

orientation

module

Device orientation

information, expressed

as device rotation in

angles around 3

different axes.

Existing 3rd party

implementations of

WAC WRT clients

from Obigo, Opera,

Aplix, etc, for

Android and other

platforms

No gaps identified

WAC 2.0 Device

APIs: The

accelerometer

module

Provides access to the

device accelerometer

information expressed in

m/s2 in 3 different axis.

Existing 3rd party

implementations of

WAC WRT clients

from Obigo, Opera,

Aplix, etc, for

Android and other

platforms

The API does not

provide a means to

separate

acceleration due to

movement from

acceleration due to

gravity, which could

be provided by

devices containing

both an

accelerometer and

a gyroscope.

http://public.wholesaleappcommunity.com/redmine/embedded/wac2pubrev/deviceapis/orientation.html
http://public.wholesaleappcommunity.com/redmine/embedded/wac2pubrev/deviceapis/orientation.html
http://public.wholesaleappcommunity.com/redmine/embedded/wac2pubrev/deviceapis/orientation.html
http://public.wholesaleappcommunity.com/redmine/embedded/wac2pubrev/deviceapis/orientation.html
http://public.wholesaleappcommunity.com/redmine/embedded/wac2pubrev/deviceapis/accelerometer.html
http://public.wholesaleappcommunity.com/redmine/embedded/wac2pubrev/deviceapis/accelerometer.html
http://public.wholesaleappcommunity.com/redmine/embedded/wac2pubrev/deviceapis/accelerometer.html
http://public.wholesaleappcommunity.com/redmine/embedded/wac2pubrev/deviceapis/accelerometer.html

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 17 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Generic SensorActuator API

Description: It currently exist a set of APIs tailored for specific sensor data. Examples are the W3C

Geolocation API (GPS), the W3C DeviceOrientation Event (accelerometer etc) and the W3C HTML Media

Capture API (camera, microphone). However, there is also a need for a generic/extensible API to get

access to sensors. This is needed as new types of sensors are frequently introduced. These sensors could

be:

 Built in the user's current device, for example a built thermometer or barometer

 Connected with the user's current device through a local connectivity method such as USB,
Bluetooth or ANT+, for example a Bluetooth enabled medical sensor.

 Located anywhere in "the cloud”.

The API should be agnostic to the location of the sensors and to underlying discovery and connection

methods.

Requirement/architectural references:

 CAP-DEV-SEMC-015: webinos MUST support a generic/extensible API for allowing applications
access to locally connected non-webinos enabled sensors/actuators.

 CAP-DEV-SEMC-016: webinos MUST support a generic/extensible API for allowing applications
access to webinos enabled sensors/actuators connected to the webinos cloud.

Phase: webinos phase 1

Webinos responsible: Claes Nilsson / SEMC

Candidate

API
Short Description

Implementation

Status
Gaps Notes Decision

W3C The

System

Information

API

A high-level API to system

information and sensors.

- A set of simple sensor APIs is

included in the specification

- Agnostic to underlying

sensor access method

- All APIs are asynchronous.

- Simple get value or watch

for continuous "callbacks"

when the values change or

when the values reach below

or above certain defined

threshold values.

- The sensor properties

currently included in the

specification are:

No known

implentations

Gaps:

- For each

additional

sensor a

new sensor

property

has to be

defined

- Reading

only,

writing

data or

control

sensor not

supported

- Only one

This API has been

criticized within

W3C and the

future for this API

is uncertain. See:

Sys Info feedback.

There is a proposal

to create a set a

smaller discrete

APIs to specific

system properties

such as network

and battery. For

sensors a set of

discrete event

based APIs similar

http://dev.w3.org/2009/dap/system-info/
http://dev.w3.org/2009/dap/system-info/
http://dev.w3.org/2009/dap/system-info/
http://dev.w3.org/2009/dap/system-info/
http://lists.w3.org/Archives/Public/public-device-apis/2011Feb/0091.html

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 18 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

AmbientLight

AmbientNoise

AmbientTemperature

AmbientAtmosphericPressure

Proximity

single

value for

each

sensor

property,

compound

data

patterns

not

supported

to the

DeviceOrientation

Event has been

proposed. In

addition it is

proposed to break

out the current

sensor part from

The System

Information API to

create a separate

"Generic sensor

API".

The Bondi

sensor

Module -

Version 1.5

*Sensor API Sensors are

classified by type. Sensor type

names are defined Strings,

and creation new type names

must be centrally defined (by

the owner of this API

definition)

Unknown

WAC 2.0

devicestatus

module

Access to various information

regarding the status of the

device.

- All APIs are asynchronous.

- Simple get value or watch

for continuous "callbacks"

when the values change or

when the values changes a

certain percent.

- Compound data patterns

supported

Existing 3rd

party

implementations

of WAC WRT

clients from

Obigo, Opera,

Aplix, etc, for

Android and

other platforms

Gaps:

-

Extensions

to the WAC

vocabulary

is needed

to cover

not only

internal

device

status but

also

internal

and

external

sensors.

- Reading

only,

writing

data or

control

http://bondi.omtp.org/1.5/PWD-2/sensor.htm
http://bondi.omtp.org/1.5/PWD-2/sensor.htm
http://bondi.omtp.org/1.5/PWD-2/sensor.htm
http://bondi.omtp.org/1.5/PWD-2/sensor.htm
http://specs.wacapps.net/wac2_0/feb2011/deviceapis/devicestatus.html
http://specs.wacapps.net/wac2_0/feb2011/deviceapis/devicestatus.html
http://specs.wacapps.net/wac2_0/feb2011/deviceapis/devicestatus.html

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 19 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

sensor not

supported

Symbian

WRT

Platform

Service 2.0

Sensors API

Access to sensor data:

- Asynchronous event based

- Compound data patterns

supported

Nokia/Symbian

WRT

Gaps:

-

Extensions,

i.e.

additional

sensor

channels

need to be

specified

for all

sensors

supported

- Seems as

not

possible to

trigger on

threshold

values

- Reading

only,

writing

data or

control

sensor not

supported

Decision:

A new generic sensor API will be specified. This API is inspired by W3C DeviceOrientation Event

Specification, W3C Battery Status Event Specification and the Android sensor API. For phase 1 only

reading, not writing, sensor data will be supported.

Editor: Claes Nilsson / SEMC

High level Requirement Notes

Find sensors in device, locally connected to the device or in the cloud

Configure a selected sensor

Provide sensor data as a DOM event

http://library.forum.nokia.com/index.jsp?topic=/Web_Developers_Library/GUID-6C74942D-1C2F-4B7A-A501-2434B54611E2.html
http://library.forum.nokia.com/index.jsp?topic=/Web_Developers_Library/GUID-6C74942D-1C2F-4B7A-A501-2434B54611E2.html
http://library.forum.nokia.com/index.jsp?topic=/Web_Developers_Library/GUID-6C74942D-1C2F-4B7A-A501-2434B54611E2.html
http://library.forum.nokia.com/index.jsp?topic=/Web_Developers_Library/GUID-6C74942D-1C2F-4B7A-A501-2434B54611E2.html
http://library.forum.nokia.com/index.jsp?topic=/Web_Developers_Library/GUID-6C74942D-1C2F-4B7A-A501-2434B54611E2.html
http://dev.w3.org/geo/api/spec-source-orientation.html
http://dev.w3.org/geo/api/spec-source-orientation.html
http://dev.w3.org/2009/dap/system-info/battery-status.html

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 20 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Microphone API

Description: Capture audio samples from microphone

Requirement/architectural reference: CAP-DEV-SEMC-004

Phase: webinos phase 1

Webinos responsible: Stefano Vercelli / Telecom Italia

Candidate API Short Description
Implementation

Status
Gaps Notes Decision

W3C Media Capture Api (see

http://www.w3.org/TR/media-capture-

api/)

Api for capturing

audio/video/image

data

W3C working

draft.

Implemented by

Phonegap

project. See

PhoneGap

Capture

Only

useful

for

capturing

media

files,

doesn't

give

access to

live

stream

webinos

will use

this API

due to

security

and

remote

access

reasons

W3C HTML Media Capture Api (see

http://www.w3.org/TR/html-media-

capture/)

Defines a new

interface for

media files, a new

parameter for the

accept attribute of

the HTML input

element in file

upload state, and

recommendations

for providing

optimized access

to the microphone

and camera of a

hosting device

W3C working

draft, under

implementation

for Android 3.0

and a Bug

tracking

implementation

in WebKit

Not an

API in

itself,

more an

add-on

to file

upload.

Only

useful

for

capturing

media

files,

doesn't

give

access to

live

stream

WhatWG Device Element (see

http://www.whatwg.org/specs/web-

apps/current-

work/complete/commands.html#devices)

Provides a Stream

API to be used on

top of user-

selected sources

WhatWG draft,

experimental

impl. in WebKit

http://www.w3.org/TR/media-capture-api/
http://www.w3.org/TR/media-capture-api/
http://docs.phonegap.com/phonegap_media_capture_capture.md.html
http://docs.phonegap.com/phonegap_media_capture_capture.md.html
http://www.w3.org/TR/html-media-capture/
http://www.w3.org/TR/html-media-capture/
http://developer.android.com/sdk/android-3.0.html
https://bugs.webkit.org/show_bug.cgi?id=63062
https://bugs.webkit.org/show_bug.cgi?id=63062
https://bugs.webkit.org/show_bug.cgi?id=63062
https://bugs.webkit.org/show_bug.cgi?id=63062
http://www.whatwg.org/specs/web-apps/current-work/complete/commands.html#devices
http://www.whatwg.org/specs/web-apps/current-work/complete/commands.html#devices
http://www.whatwg.org/specs/web-apps/current-work/complete/commands.html#devices

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 21 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

and Stream API of input.

Note: Probably

replaced by

getUserMedia

(e.g. Ericsson's)

WhatWG getUserMedia (see

http://www.whatwg.org/specs/web-

apps/current-work/complete/video-

conferencing-and-peer-to-peer-

communication.html)

Early draft in

WHAT WG.

Provides a Stream

API to be used on

top of user-

selected sources

of input.

Experimental

implementation

for Opera

Mobile

Work

in W3C

started

in Web

RTC

WG

Proposed

to

support

in phase

2

Camera API

Description: Capture video stream from device camera

Requirement/architectural reference: CAP-DEV-SEMC-005

Phase: webinos phase 1

Webinos responsible: Stefano Vercelli / Telecom Italia

Candidate API Short Description
Implementation

Status
Gaps Notes Decision

WAC 2.0 camera module (see

http://specs.wacapps.net/

wac2_0/feb2011/deviceapis/

camera.html)

Interface to device

camera for

capturing video or

image

Implementations

of WAC WRTs by

Obigo, Opera,

Aplix, Borqs

W3C Media Capture Api (see

http://www.w3.org/TR/media-capture-

api/)

Api for capturing

audio/video/image

data

W3C working

draft.

Implemented by

Phonegap

project. See

PhoneGap

Capture

Only

useful

for

capturing

media

files,

doesn't

give

access to

live

stream

webinos

will use

this API

due to

security

and

remote

access

reasons

W3C HTML Media Capture Api (see

http://www.w3.org/TR/html-media-

capture/)

Defines a new

interface for

media files, a new

W3C working

draft, under

implementation

Not an

API in

itself,

http://www.whatwg.org/specs/web-apps/current-work/complete/video-conferencing-and-peer-to-peer-communication.html
http://www.whatwg.org/specs/web-apps/current-work/complete/video-conferencing-and-peer-to-peer-communication.html
http://www.whatwg.org/specs/web-apps/current-work/complete/video-conferencing-and-peer-to-peer-communication.html
http://www.whatwg.org/specs/web-apps/current-work/complete/video-conferencing-and-peer-to-peer-communication.html
http://my.opera.com/core/blog/2011/03/23/webcam-orientation-preview
http://my.opera.com/core/blog/2011/03/23/webcam-orientation-preview
http://my.opera.com/core/blog/2011/03/23/webcam-orientation-preview
http://my.opera.com/core/blog/2011/03/23/webcam-orientation-preview
http://www.w3.org/2011/04/webrtc/
http://www.w3.org/2011/04/webrtc/
http://www.w3.org/2011/04/webrtc/
http://specs.wacapps.net/wac2_0/feb2011/deviceapis/camera.html
http://specs.wacapps.net/wac2_0/feb2011/deviceapis/camera.html
http://specs.wacapps.net/wac2_0/feb2011/deviceapis/camera.html
http://www.w3.org/TR/media-capture-api/
http://www.w3.org/TR/media-capture-api/
http://docs.phonegap.com/phonegap_media_capture_capture.md.html
http://docs.phonegap.com/phonegap_media_capture_capture.md.html
http://www.w3.org/TR/html-media-capture/
http://www.w3.org/TR/html-media-capture/

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 22 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

parameter for the

accept attribute of

the HTML input

element in file

upload state, and

recommendations

for providing

optimized access

to the microphone

and camera of a

hosting device

for Android 3.0

and and a Bug

tracking

implementation

in WebKit

more an

add-on

to file

upload.

Only

useful

for

capturing

media

files,

doesn't

give

access to

live

stream

WhatWG Device Element (see

http://www.whatwg.org/specs/web-

apps/current-

work/complete/commands.html#devices)

and Stream API

Provides a Stream

API to be used on

top of user-

selected sources

of input.

Note: Probably

replaced by

getUserMedia

WhatWG draft,

experimental

impl. in WebKit

(e.g. Ericsson's)

WhatWG getUserMedia (see

http://www.whatwg.org/specs/web-

apps/current-work/complete/video-

conferencing-and-peer-to-peer-

communication.html)

Early draft in

WHAT WG.

Provides a Stream

API to be used on

top of user-

selected sources

of input.

Experimental

implementation

for Opera

Mobile

Work

in W3C

started

in Web

RTC

WG

Proposed

to

support

in phase

2

Here is an analisys of Media Capture and HTML Media Capture. Notice that both apis require the File api

(http://www.w3.org/TR/FileAPI/).

W3C HTML Media Capture API
It looks like it has been designed for uploading pictures/audio/videos (it uses the HTML input tag). A "file

picker" is launched and it can select an existing file or take a new picture/audio/wideo. No options are

available before launching the app. It looks like there's no way to know at JS level when the

picture/audio/video has been taken. It is not clear if the picture/audio/video is saved on the filesystem.

Supposing we want an app that takes a picture and displays it, here's a theorical code snippet with

HTML Media Capture:

http://developer.android.com/sdk/android-3.0.html
https://bugs.webkit.org/show_bug.cgi?id=63062
https://bugs.webkit.org/show_bug.cgi?id=63062
https://bugs.webkit.org/show_bug.cgi?id=63062
https://bugs.webkit.org/show_bug.cgi?id=63062
http://www.whatwg.org/specs/web-apps/current-work/complete/commands.html#devices
http://www.whatwg.org/specs/web-apps/current-work/complete/commands.html#devices
http://www.whatwg.org/specs/web-apps/current-work/complete/commands.html#devices
http://www.whatwg.org/specs/web-apps/current-work/complete/video-conferencing-and-peer-to-peer-communication.html
http://www.whatwg.org/specs/web-apps/current-work/complete/video-conferencing-and-peer-to-peer-communication.html
http://www.whatwg.org/specs/web-apps/current-work/complete/video-conferencing-and-peer-to-peer-communication.html
http://www.whatwg.org/specs/web-apps/current-work/complete/video-conferencing-and-peer-to-peer-communication.html
http://my.opera.com/core/blog/2011/03/23/webcam-orientation-preview
http://my.opera.com/core/blog/2011/03/23/webcam-orientation-preview
http://my.opera.com/core/blog/2011/03/23/webcam-orientation-preview
http://my.opera.com/core/blog/2011/03/23/webcam-orientation-preview
http://www.w3.org/2011/04/webrtc/
http://www.w3.org/2011/04/webrtc/
http://www.w3.org/2011/04/webrtc/
http://www.w3.org/TR/FileAPI/

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 23 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

...

<script type="text/javascript">

function displayImage() {

var captureInput = document.getElementById('capture');

var file = captureInput.files[0];

document.getElementById("myImage").src = file.url;

}

</script>

...

<body>

...

<input type="file" accept="image/*;capture=camera" id="capture">

...

</body>

Notice that the displayImage() function should probably be invoked explicitly by the user.

W3C Media Capture APIi
It uses an external app to take the picture/audio/video. A few options are available before launching the

app ("limit", that is the number of pictures/videos/audios to take; the duration of the video), and a few

have been proposed (height and width of image, format of the output, duration of audio). Error and

success callbacks are available. It is not clear if the picture/audio/video is saved on the filesystem (it

depends on the external app).

Supposing we want an app that takes a picture and displays it, here's a theorical code snippet with

Media Capture:

...

<script type="text/javascript">

function takePicture() {

navigator.device.capture.captureImage(successCB, errorCB, { limit: 1 }); //it

takes 1 picture and exits

}

fucntion successCB(data) {

document.getElementById("myImage").src = data[0].url;

}

function errorCB(err) {

alert("an error occurred");

}

</script>

...

<body>

...

<button onClick="takePicture()">Take picture</button>

...

</body>

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 24 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Geolocation API

Description: Access to device location information

Requirement/architectural reference: CAP-DEV-SEMC-008

Phase: webinos phase 1

Webinos responsible: Stefano Vercelli / Telecom Italia

Candidate API Short Description Implementation Status Gaps Notes Decision

W3C

Geolocation

API

Access to device

location regardless of

the source of

information (it may

be GPS, GSM/CDMA

cell id, wifi, ...)

Implemented in

modern browers such

as Chrome, Firefox, iOS,

Android, Opera Mobile,

etc

No gaps

identified

A 2nd version of

the API will also

provide civic

address

information

webinos

will use

this API

GSMA OneAPI

Location

RESTful API

A RESTful API for

querying the location

of one or more

mobile devices.

Open Source Reference

Implementation in

PHP/Java

Commercial Pilot in

Canada

Possibly

no GPS

support.

This method asks

the network for

location based on

the MSISDN of the

device

Devicestatus API

Description: Access to device status informations

Requirement/architectural reference: CAP-DEV-SEMC-012, CAP-DEV-SEMC-013

Phase: webinos phase 1

Webinos responsible: Stefano Vercelli / Telecom Italia

Candidate

API

Short

Description

Implementation

Status
Gaps Notes Decision

WAC 2.0

devicestatus

module

Access to

various

informations

regarding

the status of

the device

Implementations

of WAC WRTs by

Obigo, Opera,

Aplix, Borqs

An extension

of the WAC

vocabulary is

needed to

cover all info

needed (CPU

load, system

temperature,

audio/video

codecs

capabilities,

input devices,

WAC Device Status Vocabulary

This API

will be

used, with

an

extended

vocabulary

http://dev.w3.org/geo/api/spec-source.html
http://dev.w3.org/geo/api/spec-source.html
http://dev.w3.org/geo/api/spec-source.html
https://gsma.securespsite.com/access/Access%20API%20Wiki/Location%20RESTful%20API.aspx
https://gsma.securespsite.com/access/Access%20API%20Wiki/Location%20RESTful%20API.aspx
https://gsma.securespsite.com/access/Access%20API%20Wiki/Location%20RESTful%20API.aspx
https://github.com/OneAPI/GSMA-OneAPI
https://github.com/OneAPI/GSMA-OneAPI
https://github.com/OneAPI/GSMA-OneAPI
http://canada.oneapi.gsmworld.com/
http://canada.oneapi.gsmworld.com/
http://specs.wacapps.net/wac2_0/feb2011/deviceapis/devicestatus.html
http://specs.wacapps.net/wac2_0/feb2011/deviceapis/devicestatus.html
http://specs.wacapps.net/wac2_0/feb2011/deviceapis/devicestatus.html
http://specs.wacapps.net/2.0/feb2011/deviceapis/vocabulary.html

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 25 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

...)

W3C System

Info API

"Access to

various

properties of

the system

which they

are running

on"

Not

implemented

This API has been critiized

within W3C and the future for

this API is uncertain. See: Sys

Info feedback. There is also a

proposal to rework the sensor

APi to a set of event based

APIs according to the

DeviceOrientation Event. For

example see see

http://lists.w3.org/Archives/

Public/public-device-

apis/2011Mar/0122.html and

http://lists.w3.org/Archives/

Public/public-device-

apis/2011Mar/0123.html

GSMA

OneAPI 2.0

Device

Capability

A RESTful API

to query

capabilities

of a device.

unknown

Provides

access to

static

information

only like

hardware and

software

platform

properties. No

access to e.g.

battery status.

http://www.w3.org/TR/system-info-api/
http://www.w3.org/TR/system-info-api/
http://lists.w3.org/Archives/Public/public-device-apis/2011Feb/0091.html
http://lists.w3.org/Archives/Public/public-device-apis/2011Feb/0091.html
http://lists.w3.org/Archives/Public/public-device-apis/2011Mar/0122.html
http://lists.w3.org/Archives/Public/public-device-apis/2011Mar/0122.html
http://lists.w3.org/Archives/Public/public-device-apis/2011Mar/0122.html
http://lists.w3.org/Archives/Public/public-device-apis/2011Mar/0123.html
http://lists.w3.org/Archives/Public/public-device-apis/2011Mar/0123.html
http://lists.w3.org/Archives/Public/public-device-apis/2011Mar/0123.html
https://gsma.securespsite.com/access/Access%20API%20Wiki/Device%20Capability.aspx
https://gsma.securespsite.com/access/Access%20API%20Wiki/Device%20Capability.aspx
https://gsma.securespsite.com/access/Access%20API%20Wiki/Device%20Capability.aspx
https://gsma.securespsite.com/access/Access%20API%20Wiki/Device%20Capability.aspx

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 26 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

TV and STB control API

Description: Control TV/STB via API so other devices can act as a remote control.

Requirement/architectural reference:

 WOS-US-3.3: Social Event Sharing

 WOS-US-10.1: User Centric Video Playback

 WOS-UC-TA1-001: Virtual Device

 WOS-UC-TA4-019: Ad hoc use of Foreign Devices for Playback of Film

 WOS-UC-TA7-005: Seamless Session Transfer between Devices

Phase: webinos phase 1

Webinos responsible: Fraunhofer

Candidate API Short Description
Implementation

Status
Gaps Notes Decision

Open IPTV

Forum Rel 2

Vol 5

Declarative

Application

Environment

(See pdf)

Based on CE-

HTML this

includes a

JavaScript API for

apps on a

TV/STB. Supports

e.g. app

installation and

management,

channel

configuration,

video playback,

recordings, etc.

Unknown. TV

sets supporting

CE-HTML exist.

Addresses much

more than what

is needed to

access/control

features related

to the broadcast.

The HbbTV standard is

also based on this.

BBC Universal

Control API

A RESTful API

which returns

XML responses to

GET requests to

control TV and

STB.

BBC prototypes

(See blog

announcement).

There seems to

be no way to get

access to the

broadcast

stream; e.g. to

embedded it into

an app.

Discussion on the

mailing list wether all

device features should

be exposed via API on

the server (TV/STB, TV

watching as "app") and

client (e.g. smartphone

as remote control) or

should they be just

accessible to clients.

For the former the

proposed data model

may be too strict and

http://www.openiptvforum.org/docs/Release2/OIPF-T1-R2-Specification-Volume-5-Declarative-Application-Environment-v2_0-2010-09-07.pdf
http://www.etsi.org/deliver/etsi_ts/102700_102799/102796/01.01.01_60/ts_102796v010101p.pdf
http://www.bbc.co.uk/rd/publications/whitepaper194.shtml
http://www.bbc.co.uk/rd/publications/whitepaper194.shtml
http://www.bbc.co.uk/blogs/researchanddevelopment/2011/02/universal-control.shtml
http://www.bbc.co.uk/blogs/researchanddevelopment/2011/02/universal-control.shtml

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 27 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

limiting. See

announcement and

following discussion in

replies

The Dreambox

Webinterface

API

A RESTful API

that is used on

the DBox2 STB

(for DVB-S, -C).

The API allows to

control volume,

audio tracks,

channel, EPG,

messaging, etc.

Responses are in

XML.

DBox2 Linux

Distro

No support for

accessing the

broadcast stream

to embedded in

own app, instead

a control

functionality

only. Used only

by dreambox

hardware.

A community based

project.

Decision: A new TV control API will be specified. This API makes available access to TV channel streams

that can then be plugged into a HTML5 HTMLVideoElement. Alternatively, it also provides means to

control the channel playback of a native hardware component.

http://lists.w3.org/Archives/Public/public-device-apis/2011Mar/0076.html
http://lists.w3.org/Archives/Public/public-device-apis/2011Mar/0076.html
http://lists.w3.org/Archives/Public/public-device-apis/2011Mar/0076.html
http://lists.w3.org/Archives/Public/public-device-apis/2011Mar/0076.html
http://wiki.dbox2-tuning.net/wiki/index.php/Enigma2:WebInterface
http://wiki.dbox2-tuning.net/wiki/index.php/Enigma2:WebInterface
http://wiki.dbox2-tuning.net/wiki/index.php/Enigma2:WebInterface
http://wiki.dbox2-tuning.net/wiki/index.php/DBox2_Software_Projekt
http://wiki.dbox2-tuning.net/wiki/index.php/DBox2_Software_Projekt

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 28 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Deviceinteraction API

Description: Access to apis for interacting with the end user

Requirement/architectural reference:

Phase: webinos phase 1

Webinos responsible: Stefano Vercelli / Telecom Italia

Candidate API Short Description
Implementation

Status
Gaps Notes Decision

WAC waikiki

deviceinteraction

module

Interaction with the user

through features like device

vibrator and screen

backlight

Implementations of

WAC WRTs by Obigo,

Opera, Aplix, Borqs

This API will be

used as W3C

device interaction

API is not yet in

place.

Chrome extension

for UI interaction

Chrome offers several apis

for customizing the browser

UI (add menus, tabs,

desktop notifications)

Bondi User

Interaction module

Allows customization of

menus related to specific

phone keys as well as

control of beeping,

vibration, backlight, screen

orientation

Barcode API

Description: APIs for decoding barcodes using the camera of the device.

Requirement/architectural reference: CAP-DWP-ambiesense-51

Phase: webinos phase 1

Webinos responsible/editor: Stefano Vercelli / Telecom Italia.

Contributor: Hans Myrhaug, AmbieSense Ltd

Candidate

API
Short Description

Implementation

Status
Gaps Notes Decision

ZXing

ZXing (pronounced

"zebra crossing") is

an open-source

(Apache 2.0 licensed),

multi-format 1D and

2D barcode image

In reality ZXing is

becoming the open

source industry

standard for barcode

recognition in mobile

applications and

There are

concerns

that a

JavaScript

port might

This (possibly 3rd

party provided)

library would not be

part of a device API

but apps could

choose to include

Bar code

reading will

be

supported

through a

JavaScript

http://specs.wacapps.net/wac2_0/feb2011/deviceapis/deviceinteraction.html
http://specs.wacapps.net/wac2_0/feb2011/deviceapis/deviceinteraction.html
http://specs.wacapps.net/wac2_0/feb2011/deviceapis/deviceinteraction.html
http://code.google.com/chrome/extensions/devguide.html
http://code.google.com/chrome/extensions/devguide.html
http://bondi.omtp.org/1.1/apis/index.html
http://bondi.omtp.org/1.1/apis/index.html
http://code.google.com/p/zxing/

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 29 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

processing library

implemented in Java.

The focus is on using

the built-in camera

on mobile phones to

photograph and

decode barcodes on

the device, without

communicating with

a server. A JavaScript

library based on

ZXing is proposed.

there are fully

working

implementations on

Android and other

mobile platforms.

See here for a way to

use the library on a

mobile device on a

webpage.

be slow. this library or not

based on whether

they need the

functionality. See

Measurements that

states it takes 40-60

ms to process the

image on a

Gingerbread Android

device with a 1GHz

processor. That

indicates that porting

of Zxing to JS is

probably feasible.

port of the

ZXing Java

library. This

means that

bar code

reading is

out of scope

for further

work within

WP 3.2

APIs for which no existing standards/implementations exist

Vehicle API

Description: Provides access to vehicle proberties (e.g. current speed, mileage, fuel consumption)

Requirement/architectural reference: Extension Handling

Phase: phase 1

Webinos responsible/editor: Simon Isenberg, BMW

High level Requirement Notes

Access to the Automotive API MUST be authorized based on applications

In case of a denied access to the vehicle API the requesting application SHALL be informed.

The following car properties SHALL be available read-only for applications

- model

- speed

- current fuel consumption

- average fuel consumption

- trip kilometers/miles

- total kilometers/miles

- current units

- gear

- engine status

- position of the steering wheel

An application MUST be able to bind to car properties and be infomend about the new value

http://code.google.com/p/zxing/wiki/ScanningFromWebPages
http://code.google.com/p/zxing/wiki/ScanningFromWebPages
http://code.google.com/p/zxing/wiki/ScanningFromWebPages
http://code.google.com/p/zxing/wiki/ScanningFromWebPages
http://tobeytailor.s3.amazonaws.com/get_barcode_from_image/index.html

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 30 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

An API for communicating with the in-car navigation system SHOULD be available

It SHALL be possible to set time intervals for applications to access a car property

A possible solution is to see this api as an extension of devicestatus for vehicles.

Candidate

API

Short

Description

Implementation

Status
Gaps Notes Decision

WAC 2.0

devicestatus

module

Access to

various

informations

regarding the

status of the

device

Implementations

of WAC WRTs by

Obigo, Opera,

Aplix, Borqs

An extension of

the WAC

vocabulary is

needed (for

example you can

add a new Aspect

("vehicleInfo")

with properties

"model",

"speed", ...)

W3C System

Info API

"Access to

various

properties of

the system

which they

are running

on"

W3C working

draft

This API has been critiized

within W3C and the future

for this API is uncertain.

See: Sys Info feedback.

There is also a proposal to

rework the sensor APi to a

set of event based APIs

according to the

DeviceOrientation Event.

Comment by Claes/SEMC:

Seems as W3C is taking an

event model route now for

sensors. Consider to make

a DOM level 3 event model

based Vehice API similar to

DeviceOrientation Event

specification and Battery

Status Event specification

Decision: A separate Vehicle API will be specified. The API will provide read-access to car data in the first

phase of the project. This API is inspired by W3C DeviceOrientation Event Specification, W3C Battery

Status Event Specification.

http://specs.wacapps.net/wac2_0/feb2011/deviceapis/devicestatus.html
http://specs.wacapps.net/wac2_0/feb2011/deviceapis/devicestatus.html
http://specs.wacapps.net/wac2_0/feb2011/deviceapis/devicestatus.html
http://specs.wacapps.net/wac2_0/feb2011/deviceapis/vocabulary.html
http://specs.wacapps.net/wac2_0/feb2011/deviceapis/vocabulary.html
http://www.w3.org/TR/system-info-api/
http://www.w3.org/TR/system-info-api/
http://lists.w3.org/Archives/Public/public-device-apis/2011Feb/0091.html
http://dev.w3.org/geo/api/spec-source-orientation.html
http://dev.w3.org/geo/api/spec-source-orientation.html
http://dev.w3.org/2009/dap/system-info/battery-status.html
http://dev.w3.org/2009/dap/system-info/battery-status.html

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 31 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Background information on the Vehicle API
In the browser/Web domain no developer API has been specified to access vehicle data so far. In other

domains there are a few APIs publicly available, which provide access to vehicle data, but haven't been

largely used yet.

In JSR 298 the OSGI vehicle expert group (VEG) defined a Telematics API for JAVA. This API provides

access to the vehicle data for JAVA ME developers. The OSGI VEG was discontinued in 2006. The API has

not been refined afterwards. The specification is available at:

http://jcp.org/en/jsr/summary?id=Telematics.

In other EU founded projects the Serial Line Automotive Protocol (SLAP) introduced by Volkwagen has

been used to retrieve vehicle data. The SLAP is based on XML-formatted messages to request and

receive vehicle data.

Due to the lack of a feasible API for vehicle data inside the browser domain, we define a new API which

provides read-only access to the following data:

 static/general information (brand, model, year, transmission, fuel)

 trip computer (average consumption1, average consumption2, average speed 1, average speed
2, trip distance, mileage, range)

 climate control (zone, desired temperature, vent status (automatic or level))

 controls (lights (including signals, hibeam, fog), whiper)

 engine (gear, speed, acceleration)

 park sensors

Furthermore the API provides access to the following functions:

 setting the destination of the in-car navigation system

 canceling the guidance of the in-car navigation system

 querying the in-car navigation system for POIs

The API is aligned to the current W3C's approach of event based APIs. The vehicle API does not provide

information about the geolocation, speed and acceleration. These attributes are already accessible using

the W3C Geolocation API for speed and position and the W3C Device Orientation API for acceleration.

In the first iteration of the project the vehicle API focuses on the access of read-only data, which is

available on the infotainment bus. The in-car headunit is usually connected this bus system as shown in

the following depiction.

http://jcp.org/en/jsr/summary?id=Telematics

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 32 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

For the second iteration of webinos the extension of the vehicle API to data outsite of the infotainment

bus (MOST) as well as more methods for interacting with the vehicle system seems beneficial.

NFC API

Near Field Communication (NFC) is an international standard (ISO/IEC 18092) that specifies an interface

and protocol for simple wireless interconnection of closely coupled devices operating at 13.56 MHz. The

overall application scenario is to hold a device close to a wireless tag to exchange some digital

information or data. Alternatively, the scenario is to hold two devices close to each other in order to

exchange some information or data between them. NFC is also sometimes referred to as contactless

communication.

There are three use case categories for NFC driven by NFC Forum, www.nfc-forum.org:

1. NFC peer to peer communication, with use cases for sharing data between devices, and for
pairing with other devices.

2. Tag R/W mode, with use cases for any application provider proposition integrate real world
objects with Internet and applications.

3. Card Emulation mode, is to move the existing smart cards that you have in your wallet today
into the phone and make use of contactless NFC connections.

http://www.nfc-forum.org/

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 33 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

All three propositions addressed by use cases of the NFC forum are indeed relevant to the webinos user

stories and use cases. Ideally, webinos application developers will therefore need all of these

implemented. Thus, in terms of webinos implementaiton priority, we recommend the following order:

first 2, then 1, and then 3, because our target group is application developers, and most of them will

most likely be doing 2 in the beginning. 1 will become increasingly common when there are a lot of

smartphones with NFC capabilities around in the market. Currently, in June 2011, the following NFC

enabled devices are being sold in the mass market: Samsung Nexus S and Nokia Oro. The Samsung

Galaxy S2 and the Nokia C7 will also be shipped with NFC capability.

Candidate

API

Short

Description
Implementation Status Gaps Notes Decision

Android

NFC

Read write mode is complete.

Peer to peer mode is being

implemented

This is our choice because

Android is now shipped more

than iPhone, the activity is high

Android NFC, and the license is

Apache 2.0

Open NFC

There are several versions for

various platforms becoming

available. The information about

what is being implemented is

unclear.

This is not a choice because the

Android implementation is

based on the Android NFC API,

and it is unclear how much

activity this open source

project.

Libnfc

The implementation is in C and

can be cross compiled for

different operating systems.

This is not our choice, because

of the LGPL license.

J2ME (JSR-

257) NFC

The implementation is complete

several years ago. Due to the

current shift in the market, it is

less likely that there will be any

peer to peer mode supported.

This is not our choice, because

of the shift from J2ME enabled

devices towards Android in the

current market.

QT

Mobility

NFC
The implementation is complete.

Due to the Nokia

announcement on the

Microsoft alliance, this seems

more risky in the long term.

Symbian

NFC
The implementation is complete.

Due to the Nokia

announcement on the

Microsoft alliance, this seems

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 34 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

more risky in the long term.

Decision: An NFC API will be specified within webinos.

Requirement/architectural reference: TBD

Phase: Phase 1

Webinos responsible/editor: Hans Myrhaug / AmbiSense, Stefano Vercelli / TIM

High level Requirement Notes

Tag R/W mode Based on Android NFC API Gingerbread

NFC peer to peer communication mode Based on Android upcoming NFC API

Below is the proposed roadmap for the webinos API implementation. It seems clear that NFC peer to

peer it will be supported on Android and

that it already is supported on both QT and Symbian. Thus, we believe that NFC peer to peer should also

be supported by webinos after the NFC read and write capabilities (v=implemented, x=not yet

implemented).

Proposed roadmap for implementation of the webinos NFC API Phase I Phase II

Register to launch application v v

Launch application on a specific NFC tag type v v

Launch application on connection to a specified service name (LLCP) x v

Listening to NFC discovery events v v

An NDEF tag has been discovered v v

A specified NDEF record type has been discovered v v

An NFC target has been detected v v

Reading and writing to NFC tags v v

Read NDEF messages and records from an NFC tag v v

Write NDEF messages and records to an NFC tag v v

Peer to peer communcation between NFC devices x v

Open connection to an NFC device (LLCP) x v

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 35 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Send data to an NFC device (LLCP) x v

Receive data from an NFC device (LLCP) x v

Application Data APIs

Description
This section contains investigation results on APIs for access to application data.

Resources
Primary contributor/editor for this API category: Fraunhofer

Supporting contributors/reviewers: SEMC / W3C

APIs based on existing standards/implementations
See W3C current state of mobile Web app technologies: data storage as a good starting point.

Contacts API

Description: Access/use the native contact application and its data. e.g. the contact application of a

mobile device with Android or a fixed PC where Outlook is installed.

Requirement/architectural reference:

 WOS-US-1.1: Smart Device Integration

 WOS-US-2.3: Converging Applications within and across Devices

 WOS-UC-TA8-004: Install-time presentation and negotiation of application policies

Phase: 1

Webinos responsible: Fraunhofer

Candidate

API
Short Description

Implementation

Status
Gaps Notes Decision

WAC 2.0

Device APIs:

The contact

module

A JavaScript API to

access multiple

address books to add,

update, delete or

search for contacts.

Fraunhofer MWR

prototype (partial)

W3C DAP

Contacts

API

A JavaScript API for

finding contacts.

Adding or updating

contacts should be

done via existing Web

W3C ED

Mozilla Labs

experimental

Firefox add-on (See

latest release

The experimental

Firefox add-on lags

behind the DAP API

draft (documented

here). It also adds a

webinos will

adapt this API

from W3C -

additions

necessary due

http://www.w3.org/2011/02/mobile-web-app-state.html#data
http://specs.wacapps.net/wac2_0/feb2011/deviceapis/contact.html
http://specs.wacapps.net/wac2_0/feb2011/deviceapis/contact.html
http://specs.wacapps.net/wac2_0/feb2011/deviceapis/contact.html
http://specs.wacapps.net/wac2_0/feb2011/deviceapis/contact.html
http://dev.w3.org/2009/dap/contacts/
http://dev.w3.org/2009/dap/contacts/
http://dev.w3.org/2009/dap/contacts/
https://mozillalabs.com/contacts/2010/10/22/contacts-in-the-browser-0-4-released/
https://wiki.mozilla.org/Labs/Contacts/ContentAPI
https://wiki.mozilla.org/Labs/Contacts/ContentAPI

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 36 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

platform APIs (e.g.

attach a vcard string

or file to an html

anchor element).

announcement)

Bug tracking

implementation in

Webkit

service API for limited

interaction with social

Web services.

to webinos

specific issues

are listed below

this table

PhoneGap

Contacts

API

A JavaScript API for

creating, updating

and search for

contacts.

Android

BlackBerry

WebWorks (OS 5.0

and higher)

iOS

Nokia

Platform

Services 2.0

Contacts

API

A JavaScript API for

accessing and

managing contact

information in the

default contact

database.

Symbian WRT 1.1

webinos specific additions

The W3C Contacts API specification defines the concept of a user's unified address book - where address

book data may be sourced from a plurality of sources - both online and locally. However, the selection

of sources for this unified address book is out of scope for the W3C Contacts specification. For the multi-

device useability of webinos, a function needs to be added that allows the retrieval of a list of contacts

across devices using search/discovery criteria, most likely be based on the webinos ServiceDiscovery

module.

Calendar API

Description: Access/use to native calendar application and its data, e.g. the calendar application of a

mobile device with Android or a fixed PC where Outlook or Thunderbird are installed.

Requirement/architectural reference:

 WOS-US-1.1: Smart Device Integration

 WOS-US-2.3: Converging Applications within and across Devices

 WOS-US-3.3: Social Event Sharing

 WOS-US-8.2: Seamless Navigation

 WOS-UC-TA1-013: Generating Reports

 WOS-UC-TA1-014: Solving Problem with Clashing Appointments

 WOS-UC-TA7-006: The publicity and privacy of Context Information

 WOS-UC-TA8-004: Install-time Presentation and Negotiation of Application Policies

 WOS-UC-TA8-009: User switching between personal policies

https://bugs.webkit.org/show_bug.cgi?id=63223
https://bugs.webkit.org/show_bug.cgi?id=63223
https://bugs.webkit.org/show_bug.cgi?id=63223
http://docs.phonegap.com/phonegap_contacts_contacts.md.html
http://docs.phonegap.com/phonegap_contacts_contacts.md.html
http://docs.phonegap.com/phonegap_contacts_contacts.md.html
http://library.forum.nokia.com/topic/Web_Developers_Library/GUID-1EA270E2-0954-4326-ABBA-8DC4EDE465B5.html
http://library.forum.nokia.com/topic/Web_Developers_Library/GUID-1EA270E2-0954-4326-ABBA-8DC4EDE465B5.html
http://library.forum.nokia.com/topic/Web_Developers_Library/GUID-1EA270E2-0954-4326-ABBA-8DC4EDE465B5.html
http://library.forum.nokia.com/topic/Web_Developers_Library/GUID-1EA270E2-0954-4326-ABBA-8DC4EDE465B5.html
http://library.forum.nokia.com/topic/Web_Developers_Library/GUID-1EA270E2-0954-4326-ABBA-8DC4EDE465B5.html

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 37 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Phase: 1

Webinos responsible: Fraunhofer

Candidate API Short Description
Implementation

Status
Gaps Notes Decision

WAC 2.0

Device APIs:

The calendar

module

A JavaScript API to access

multiple calendars defined as

set of events that can be

created, updated, deleted or

searched for.

Fraunhofer MWR

prototype (partial)

W3C DAP

Calendar API

A JavaScript API for finding

events. Adding or updating

events should be done via

existing Web platform APIs (e.g.

attach file with *.ics or *.ical

extension to an html anchor

element).

W3C ED

webinos will adapt this

API from W3C -

additions necessary

due to webinos

specific issues are

listed below this table

Nokia

Platform

Services 2.0

Calendar API

A JavaScript API for accessing,

creating and managing calendar

entries in the default calendar.

Ability to subscribe to calendar

entries being added, modified,

deleted.

Symbian WRT 1.1

webinos specific additions

The W3C Calendar API specification is designed to be agnostic of any underlying calendaring service

sources. However, the selection of sources for this calendar information is out of scope for the W3C

Calendar specification. For the multi-device useability of webinos, a function needs to be added that

allows the retrieval of a list of calandar data across devices using search/discovery criteria, most likely

be based on the webinos ServiceDiscovery module.

Messaging API

Description: Send and receive messages of type email, SMS, MMS.

Requirement/architectural reference:

 WOS-US-1.1: Smart Device Integration

 WOS-US-3.3: Social Event Sharing

 WOS-US-5.1: Context Sensitive Triggering

 WOS-UC-TA1-011: Continuous monitoring of diabetic’s blood glucose levels

 WOS-UC-TA7-006: The publicity and privacy of Context Information

http://specs.wacapps.net/wac2_0/feb2011/deviceapis/calendar.html
http://specs.wacapps.net/wac2_0/feb2011/deviceapis/calendar.html
http://specs.wacapps.net/wac2_0/feb2011/deviceapis/calendar.html
http://specs.wacapps.net/wac2_0/feb2011/deviceapis/calendar.html
http://dev.w3.org/2009/dap/calendar/
http://dev.w3.org/2009/dap/calendar/
http://library.forum.nokia.com/topic/Web_Developers_Library/GUID-A359B122-CB52-492C-8C0D-0062ED0A6A89.html
http://library.forum.nokia.com/topic/Web_Developers_Library/GUID-A359B122-CB52-492C-8C0D-0062ED0A6A89.html
http://library.forum.nokia.com/topic/Web_Developers_Library/GUID-A359B122-CB52-492C-8C0D-0062ED0A6A89.html
http://library.forum.nokia.com/topic/Web_Developers_Library/GUID-A359B122-CB52-492C-8C0D-0062ED0A6A89.html

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 38 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 WOS-UC-TA8-001: Receiving local messages and alerts

Phase: 1 (2 for instant messaging functionality)

Webinos responsible: Fraunhofer

Candidate

API

Short

Description

Implementation

Status
Gaps Notes Decision

W3C DAP

Messaging

API

A JavaScript API

for sending

SMS, MMS and

email based on

URL schemes.

Supports

attachments.

W3C ED

As of May '11

no reading or

subscribing of

messages is

supported.

Possibly

planned for

later API

revisions.

Consider

extending this API

for reading and

subscribing as well.

WAC 2.0

Device

APIs: The

messaging

module

A JavaScript API

to send, search

for and

subscribe to

SMS, MMS and

email

messages.

Fraunhofer MWR

prototype

(partial, only sms

sending)

webinos will base

the Messaging API

on the WAC/BONDI

API due to the

availability of

receiving messages -

an extension of the

W3C API would

most likely resemble

the WAC API, so it is

more convenient to

start with that.

webinos specific

remarks follow this

table.

GSMA

OneAPI

SMS, MMS

RESTful

Version 1.0

(pdf)

A RESTful API

that allows

sending and

receiving of

SMS and MMS.

Open Source

Reference

Implementation

in PHP/Java

Commercial Pilot

in Canada

Uses application/x-

www-form-

urlencoded and

application/json

for requests and

application/json

for responses.

Nokia

Platform

Services 2.0

A JavaScript API

that allows the

sending,

Symbian WRT 1.1

http://dev.w3.org/2009/dap/messaging/
http://dev.w3.org/2009/dap/messaging/
http://dev.w3.org/2009/dap/messaging/
http://specs.wacapps.net/wac2_0/feb2011/deviceapis/messaging.html
http://specs.wacapps.net/wac2_0/feb2011/deviceapis/messaging.html
http://specs.wacapps.net/wac2_0/feb2011/deviceapis/messaging.html
http://specs.wacapps.net/wac2_0/feb2011/deviceapis/messaging.html
http://specs.wacapps.net/wac2_0/feb2011/deviceapis/messaging.html
http://www.gsmworld.com/oneapi/documents/SMS-RESTful-API-V1.0f.pdf
https://github.com/OneAPI/GSMA-OneAPI
https://github.com/OneAPI/GSMA-OneAPI
https://github.com/OneAPI/GSMA-OneAPI
https://github.com/OneAPI/GSMA-OneAPI
http://canada.oneapi.gsmworld.com/
http://canada.oneapi.gsmworld.com/
http://library.forum.nokia.com/topic/Web_Developers_Library/GUID-0011B83F-274A-445B-843D-4CAA8BA977F6.html
http://library.forum.nokia.com/topic/Web_Developers_Library/GUID-0011B83F-274A-445B-843D-4CAA8BA977F6.html
http://library.forum.nokia.com/topic/Web_Developers_Library/GUID-0011B83F-274A-445B-843D-4CAA8BA977F6.html

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 39 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Messaging

API

retrieving and

managing of

SMS, MMS and

email

messages.

webinos specific changes

In addition to the message types e-mail, SMS and MMs, the webinos Messaging API also supports an

'Instant Messaging' (or 'Twitter'-style) type of sending and receiving messages. These are handled

similar to SMS messaging, but require a different addressing scheme. Depending on the underlying

messaging service, the retrieval of previous messages.

might or might not be possible. To a certain extent, IM-type messages can also be used for sending text

based notification messages to devices and applications as well as to users.

To support this, the basic WAC API has been extended by adding a fourth messaging type and an

onInstantMessage(in OnIncomingMessage messageHandler) function. This has been done for phase 1 of

webinos to allow experimentation, with a more specific and well defined set of messaging modi (e.g.

Notifications) to be determined for phase 2.

Filesystem API

Description: Access to device filesystem

Requirement/architectural reference: CAP-DEV-SEMC-002, CAP-DEV-SEMC-003, CAP-DEV-SEMC-014

Phase: 1

Webinos responsible: Stefano Vercelli / Telecom Italia

Candidate API Short Description Implementation Status Gaps Notes Decision

WAC 2.0 Device

APIs: The

filesystem

module

A JavaScript API to

access device filesystem

Implementations of WAC

WRTs by Obigo, Opera,

Aplix, Borqs

W3C File API &

FileReader API

Interface to read user-

selected files

Firefox 3.6+

Google Chrome 7+

No gaps

identified

webinos will

implement

this api

W3C File API:

Writer

A JavaScript API to write

files

TBD, spec as early W3C

WD

No gaps

identified

webinos will

implement

this api

W3C File API:

Directories and

System

A JavaScript API to

navigate file system

hierarchies

W3C working draft

webinos will

implement

this api

PhoneGap File A JavaScript API to Android

http://specs.wacapps.net/wac2_0/feb2011/deviceapis/filesystem.html
http://specs.wacapps.net/wac2_0/feb2011/deviceapis/filesystem.html
http://specs.wacapps.net/wac2_0/feb2011/deviceapis/filesystem.html
http://specs.wacapps.net/wac2_0/feb2011/deviceapis/filesystem.html
http://dev.w3.org/2006/webapi/FileAPI/
http://dev.w3.org/2006/webapi/FileAPI/
http://dev.w3.org/2009/dap/file-system/file-writer.html
http://dev.w3.org/2009/dap/file-system/file-writer.html
http://www.w3.org/TR/file-system-api/
http://www.w3.org/TR/file-system-api/
http://www.w3.org/TR/file-system-api/
http://docs.phonegap.com/phonegap_file_file.md.html

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 40 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

API access a mobile device

filesystem for reading

and writing files.

BlackBerry WebWorks

(OS 5.0 and higher)

iOS

Multimedia/Gallery API

Motivation for a Gallery API:

There has been discussion as to whether a gallery is required and whether file access alone is enough.

The rationale being that all media files are encapsulated as files.

There are several reasons why a gallery it would be a good idea:

 Remote galleries: file access api will not give to access to remote galleries - a common use case

 Performance: many galleries are very large. Iterating over 10,000 files may not be best way to
deal with it

 Metadata and thumbnails: for media the most important thing is the meta -data - a file access
method would require implementing all file types and tag formats on JavaScript. This it to
complex and inefficient

 Binary data: Javascript and file access methods do not yet support binary data very well

Description: Access to media type files (audio, video, image) and playback.

Requirement/architectural reference:

 WOS-US-3.2: Sharing Music within a community social context

 WOS-US-10.1: User Centric Video Playback

 WOS-UC-TA1-012: Bridging to the Home Network

 WOS-UC-TA4-019: Ad hoc use of Foreign Devices for Playback of Film

 WOS-UC-TA7-004: Finding Devices in Close Physical and Social Proximity

Phase: 1

Webinos responsible: Fraunhofer

Candidate API Short Description
Implementation

Status
Gaps Notes Decision

HTML5 <video>

element

HTML5 <audio>

element

An HTML API to

playback video

and audio files

and streams.

W3C WD

implemented with

varying supported

codecs in:

Firefox 3.6+

Firefox Mobile

Google Chrome 3+

Android

Webbrowser (not

http://dev.w3.org/html5/spec/Overview.html#video
http://dev.w3.org/html5/spec/Overview.html#video
http://dev.w3.org/html5/spec/Overview.html#audio
http://dev.w3.org/html5/spec/Overview.html#audio

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 41 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

inline)

Apple Safari 5+

Internet Explorer 9

Nokia Platform

Services 2.0

Media

Management API

A JavaScript API to

obtain a list of

media files and

their properties.

Symbian WRT 1.1

W3C Gallery API

A JavaScript API

for searching in

multiple gallery

objects for media

files.

unknown

webinos will adapt

this API from W3C -

changes necessary

due to webinos

specific issues are

listed below this table

PhoneGap Media

API

A JavaScript API to

playback (and

record) audio files

on a mobile

device.

Android

BlackBerry

WebWorks (OS 5.0

and higher)

iOS

Playback part

obsolete

because of

HTML5

<audio>,

<video>.

WAC 1.0

AudioPlayer

A JavaScript API

that can playback

audio files and

streams.

Opera Widget

Runtime for Android

Obsolete

because of

HTML5

<audio>

webinos specific changes

Unlike Contacts and Calendar, the W3C Gallery API already provides a getGalleries method that allows

access not only to local, but also to external galleries. While it might be useful to add a

"webinos.findServices(user, "Galleries"...)" method as well (for consistency with Calendar and Contacts),

this is just a possible addition, but not a necessity.

Payment API

Description: And API to charge users for apps/in-app-purchase/app-usage.

Requirement/architectural reference: [State reference to webinos requirement or architectural

component, interface, specification etc]

Phase: 1

Webinos responsible: Fraunhofer

Candidate API
Short

Description

Implementation

Status
Gaps Notes Decision

http://library.forum.nokia.com/topic/Web_Developers_Library/GUID-92663866-20E4-4403-B3A9-F9CCB91A7A02.html
http://library.forum.nokia.com/topic/Web_Developers_Library/GUID-92663866-20E4-4403-B3A9-F9CCB91A7A02.html
http://library.forum.nokia.com/topic/Web_Developers_Library/GUID-92663866-20E4-4403-B3A9-F9CCB91A7A02.html
http://library.forum.nokia.com/topic/Web_Developers_Library/GUID-92663866-20E4-4403-B3A9-F9CCB91A7A02.html
http://dev.w3.org/2009/dap/gallery/
http://docs.phonegap.com/phonegap_media_media.md.html
http://docs.phonegap.com/phonegap_media_media.md.html
http://specs.wacapps.net/wac1_0/dec2010/audioplayer.html
http://specs.wacapps.net/wac1_0/dec2010/audioplayer.html
http://www.opera.com/press/releases/2010/12/22/
http://www.opera.com/press/releases/2010/12/22/

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 42 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

GSMA OneAPI Payment

RESTful Version 1.0 (pdf)

A RESTful

API to

enable to

charge

mobile

subscribers

for Web

application

usage or

content.

Open Source

Reference

Implementation

in PHP/Java

Commercial Pilot

in Canada

Uses

application/x-

www-form-

urlencoded and

application/json

for requests and

application/json

for responses.

PayPal Direct Payment

API (Description)

A SOAP

based API to

allow

payments

from Web

applications

using PayPal

as a service

provider.

Java, ASP.NET

and PHP

wrappers/SDKs

available from

PayPal SDK site

(https://www.

paypal.com/sdk)

Specific to one

payment service

provider.

JSR-000229 Payment API

(PDF download)

Java specific

architecture

for payment

handling,

unchanged

since 2005.

Architecture

quite Java

specific, difficult

to map to other

languages

architectures. No

detailed

payment

functionality

specified

(payment itself is

only via a

product name,

which needs to

be known to the

payment

provider, hence

essentially only

direct payments

to shops

(payment service

provider is equal

http://www.gsmworld.com/oneapi/documents/Payment-RESTful-API-V1.0.pdf
https://github.com/OneAPI/GSMA-OneAPI
https://github.com/OneAPI/GSMA-OneAPI
https://github.com/OneAPI/GSMA-OneAPI
https://github.com/OneAPI/GSMA-OneAPI
http://canada.oneapi.gsmworld.com/
http://canada.oneapi.gsmworld.com/
http://www.paypalobjects.com/en_US/ebook/PP_APIReference/toc.html
https://www.paypal.com/sdk
https://www.paypal.com/sdk
http://download.oracle.com/otndocs/jcp/mpay_api-1_0-fr-spec-oth-JSpec/

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 43 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

to product

provider) is

possible)

Android In-app Billing API

(http://developer.android

.com/Gide/market/

billing/index.html)

Billing API

that links in-

app

purchasing

to the

Android

Market

account.

Android SDK API

accessing the

Android Market

service.

Useful API, but

specific to Java

and Android

Market.

webinos specific changes

Since none of the existing solution provides a sufficiently generic payment solution, webinos will define

a generic and simple shopping basket based solution that can be mapped to different underlying

payment systems to provide a systems that can address payments on platform bound payment

solutions as well as open payment services.

Communication APIs

Description
This section contains investigation results on APIs for communication with other devices, other

applications and servers.

Resources
Primary contributor/editor for this API category: Samsung

Supporting contributors/reviewers: SEMC / ISMB / VisionMobile

APIs based on existing standards/implementations

Socket Communication

API's mentioned in this section can be used by application developer to connect to application resources

once the device discovered are presented and connected.

Phase 1

Description: To establish communication between two webinos devices.

Requirement/architectural reference: CAP-DEV-SEMC-006 webinos SHALL provide means for

applications to execute streamed real-time interactive bi-directional communication with two or more

other webinos applications running in the same device or running in different devices.

http://developer.android.com/guide/market/billing/index.html
http://developer.android.com/guide/market/billing/index.html
http://developer.android.com/guide/market/billing/index.html

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 44 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Phase: webinos Phase 1

Webinos responsible: SEMC

Phase 2

"Web RTC":

http://rtc-

web.alvestrand.com/

Web RTC is still

in a start-up

phase and the

goal is to

define/select

api’s, protocols

and codecs that

are required to

enable real-time

bi-directional

communication

in a Web

browser. Web

RTC will enable

the possibility to

implement

video/audio

conference

applications

without

installing plug-in

components.

The work with

Web RTC will be

divided between

IETF and

W3C/WHATWG.

IETF will

define/select the

protocols and

codecs whilst

W3C/WHATWG

will define the

client API’s. The

new client API’s

will define the

possibility to: 1.

get user media

from a camera

Experimental

implementations

exists:

https://labs.ericsson

.com/developer-

community/blog/

beyond-html5-peer-

peer-conversational-

video

http://my.opera.com/

core/blog/2011/03/23/

webcam-orientation-

preview

Web RTC does

not replaces

WebSockets.

However, Web

RTC is much

better suited

for exchanging

data between

peer with real-

time

characteristics.

Work in W3C

started in Web

RTC WG. If the

work is

successful,

implementations

will most likely

exist in all

modern

browsers before

webinos is

ready.

It might

be

provided

in

browser

and no

work

might be

required

in

webinos

project

http://rtc-web.alvestrand.com/
http://rtc-web.alvestrand.com/
https://labs.ericsson.com/developer-community/blog/beyond-html5-peer-peer-conversational-video
https://labs.ericsson.com/developer-community/blog/beyond-html5-peer-peer-conversational-video
https://labs.ericsson.com/developer-community/blog/beyond-html5-peer-peer-conversational-video
https://labs.ericsson.com/developer-community/blog/beyond-html5-peer-peer-conversational-video
https://labs.ericsson.com/developer-community/blog/beyond-html5-peer-peer-conversational-video
https://labs.ericsson.com/developer-community/blog/beyond-html5-peer-peer-conversational-video
http://my.opera.com/core/blog/2011/03/23/webcam-orientation-preview
http://my.opera.com/core/blog/2011/03/23/webcam-orientation-preview
http://my.opera.com/core/blog/2011/03/23/webcam-orientation-preview
http://my.opera.com/core/blog/2011/03/23/webcam-orientation-preview
http://www.w3.org/2011/04/webrtc/
http://www.w3.org/2011/04/webrtc/

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 45 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

or microphone

(GetUserMedia

API), 2. connect

directly to a

different peer

(PeerConnection

API) and 3.

stream media

and data

between the

peers (Stream

API). As opposed

to WebSockets,

PeerConnection

do not require

that connections

are relayed via a

server. For

example, two

devices on the

same IP sub

network or with

public ip

addresses can

connect directly

to each other.

To establish the

connection the

current working

assumption is

that ICE

[RFC5245] will

be used to

negotiate and

discover which

addresses that

can utilized to

communicate

directly between

the peers. In

some cases it is

not possible to

find a direct

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 46 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

path between

the peers

depending on

the network

topology. In

those cases a

TURN server is

used to relay the

traffic between

the peers. The

working group

has tried to

agree upon a

single session

establishment

protocol. SIP and

XMPP have been

proposed but it

seems that the

group will not

agree upon one

protocol. The

current

prediction is that

the session

protocol will be

left out of the

standard and

initiatives will be

started to create

open source

JavaScript

implementations

and let the

market decide

which

implementation

that will be

used.

A common approach is to use either WebSockets or Server-Sent events and if fails use XMLHttpRequest.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 47 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Individual Components Communication

Description: To establish communication with server, which does not require continuous

communication.

Requirement/architectural reference: ID-USR-Oxford-37 webinos SHALL provides methods to make

applications addressable so that other applications can communicate with them.

Phase: webinos Phase 1

Webinos responsible:

Candidate API Short Description
Implementation

Status
Gaps Notes Decision

W3C

XMLHttpRequest

It allows

performing HTTP

client

functionality

directly from the

script. It sends

request directly

to the WebServer

without loading

whole Web page.

Response are

loaded without

need to load the

page, reply from

server can be in

XML, text, or in

JSON format.

Supported in all

browsers

Cross origin

website

access

were used

to be

blocked

but

addressed

via CORS

It is ideal where

communication is

required between

client and server

but does require

communication

continuously such

as submitting

form.

It is already

supported in

modern browser

and there is no

need of webinos

specific

implementation

Messaging

Description: To send messages between application running on same device but with different

instances.

Requirement/architectural reference: NM-DEV-FOKUS-001 It SHALL be possible to exchange

information between multiple entities in terms of events.

DA-DEV-ISMB-003 Applications installed on a device SHALL be addressable, with multiple instances of

the same application being separately addressable.

Phase: webinos Phase 1

Webinos responsible:

Candidate

API
Short Description Implementation Status Gaps Notes Decision

W3C HTML5 Two independent It is implemented in at least No

It is already

http://www.w3.org/TR/XMLHttpRequest2/
http://www.w3.org/TR/XMLHttpRequest2/
http://caniuse.com/#search=XMLHttpRequest
http://caniuse.com/#search=XMLHttpRequest
http://www.w3.org/TR/cors/
http://dev.w3.org/html5/postmsg/

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 48 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Web

Messaging

(Referred as

Channel

Messaging in

HTML5

Document)

code that want to

communicate

directly. It supports

port to port

communication. Ideal

for intra

communication

between two

instances that run in

different contexts.

Chrome and Firefox as well in

Android browser. For example

test with

http://www.html5test.com/

caching

support

supported in

modern browser

and there is no

need of webinos

specific

implementation

APIs for which no existing standards/implementations exist

Low level event handling API

Description: To send/receive/forward arbitrary data among any entity, in particular being suited for

developing higher level APIs relying on data exchange featuring webinos' overlay networking and

discovery

Requirement/architectural reference: All "Remote Notifications and Messaging Requirements" (NM-...)

Phase: 1

Webinos responsible/editor: Stefano D'Angelo/ISMB

High level Requirement Notes

Generating events

Sending/forwarding events

Registering/unregistering event listeners for incoming events

Application execution APIs
This section contains investigation results on application execution APIs.

Resources
Primary contributor/editor for this API category: VisionMobile

Supporting contributors/reviewers: Fraunhofer

Description
The Application Execution API allows activation of native and webinos applications installed on the

device.

In addition, the API will support a facility for performing late run-time binding between different

webinos applications. This facility is modeled after Intent mechanism of Android OS. An intent is an

http://www.html5test.com/

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 49 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

abstract description of an operation to be performed, which holds a passive data structure containing an

abstract description of an action to be performed. For example webinos application may request the

system to show a map using generic intent mechanism. The run-time will then choose which mapping

application should be activated to perform the action. The requesting application is not required to have

any knowledge of which specific mapping application is installed in the device.

Policies
Operation of Application Execution API is guided by Application Execution Policies, which can be

modified by user. The policies control the following aspects of API operation:

 Enable/disable of activation of native applications

 Enable/disable of activation of webinos installable applications

 Enable/disable of notifications to users when a webinos application attempts to activate
another application

 Enable/disable application’s ability to discover installed applications

 Enable/disable of logging of operations performed using the API

Application Execution API provides mechanisms for webinos applications to discover current application

execution policies, as well as test if specific webinos application is installed in the device, or is running in

the device.

Analysis of requirements from WP2.2
The table below lists relevant requirements identified in WP2.2 and the compliance status based on

current proposal.

Requirement Description
Compliance

Status
Notes

DA-DEV-SEMC-

004

webinos SHALL provide means for an Application to

detect the availability of a service.
Phase 2

Postponed due to

T3.5 decision to

drop any policy

querying API

DA-ASP-FHG-

006

webinos SHALL provide means to discover devices

that have a specific application installed.
Phase 2

Postponed due to

T3.5 decision to

drop any policy

querying API

DA-DEV-ISMB-

002

Applications installed on a device SHALL be

discoverable, according to security policies.
Phase 2

Postponed due to

T3.5 decision to

drop any policy

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 50 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

querying API

NM-DEV-

FOKUS-002

It SHALL be possible to subscribe to certain event

types in order to get notified if the related event

occurs.

Phase 2

NM-USR-IBBT-

002

It SHALL be possible to notify the user of application

launch requests
Phase 1

PS-USR-

Oxford-112

The webinos Runtime Environment SHALL be

capable of specifying fine-grained security policies

on all features of devices and user data.

Phase 1

PS-USR-

Oxford-37

webinos SHALL allow access control decisions to be

logged
Phase 1

PS-USR-

Oxford-38

webinos SHALL allow policies which specify

confirmation at runtime by a user when an access

request decision is required

Phase 1

PS-USR-

Oxford-40

Users SHALL be able to modify policies about events

before they occur (e.g. up-front policy specification)
Phase 1

PS-USR-

Oxford-49

User SHALL be able to view & manage application

policies
Phase 1

PS-USR-

Oxford-52

Users SHALL be able to modify policies to allow or

deny access to further functionality or data
Phase 1

PS-USR-

Oxford-75

The webinos runtime SHALL be able to alert the user

at runtime using a visual notification
Phase 1

PS-USR_DEV-

Oxford-46

Applications SHALL request for access rights to any

device feature or policy-controlled item prior to

accessing it. Applications MUST be able to continue

to work in a limited manner if an access request to a

feature is not granted.

Phase 1

PS-USR-

Oxford-62

Applications SHALL be isolated from each other. An

application MUST NOT be able to view or modify

another application's data or execution state

Phase 1

LC-DWP-ISMB-

116
Lifecycle operations regarding the webinos runtime

itself SHALL nicely integrate with the package
Phase 2

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 51 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

management system of the underlying platform and

SHALL follow platform-specific common practices.

CAP-DEV-

SEMC-202

It MUST be possible to register a background

application for automatic execution at device start-

up.

Phase 2

CAP-DEV-

SEMC-203

webinos runtime MUST be able to start applications

based on events, e.g. an incoming message,

detected wifi coverage, sensor connected etc.

Phase 2

CAP-DEV-

SEMC-204

The webinos runtime SHALL be able to invoke

applications by a timer based event.
Phase 2

Functional API groups
The Application Execution API contains the following groups of functions:

1. Activation of native app. Due to differences in security models between native and webinos
apps, activation of native apps requires user consent. Optional completion code can be passed
to the initiating webinos application.

2. Activation of installable webinos apps. Activated application should be able to pass results to
the originating application. The originating application shall be able to receive asynchronous
notifications about completion of the activated application.

3. Sending intents activating generic set of functions. There should be default handler and user
selection of alternative handler.

4. Inquire activation policies to discover current system configuration

5. Test if specific webinos application is installed in the device

6. Test if specific webinos application is running in the device

7. Delivery of system-wide events (e.g. boot or shut-down, power-management) that start
webinos app automatically whenever event occurs. This is similar to Android broadcast intents.
(registration for the events is performed in webinos app manifest file.) This API is different from
general event/messaging API, which is intended to be used to deliver information between two
running apps. Broadcast event reception API is intended to deliver system-wide broadcast
events, including starting an app that registered event, in case the app is not running.

The following table shows planned implementation status for Phase 1 and Phase 2.

API name Description Phase

Launch native Launch native apps installed on the device
Phase

2

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 52 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Launch webinos Launch webinos apps installed on the device
Phase

1

Launch action Sending intents activating generic set of functions.
Phase

2

Check policies

Inquire activation policies to discover current system configuration.

(Postponed due to T3.5 decision to drop any policy querying API (Berlin

meeting))

Phase

2

Check local Test if specific webinos application is installed in the device
Phase

1

Check running Test if specific webinos application is running in the device
Phase

2

Broadcast event

reception

Delivery of system-wide events (e.g. boot or shut-down, power-management)

that start webinos app automatically whenever event occurs.

Phase

2

Phase 1 APIs

webinos App Launcher API

Description: API for launching webinos applications installed in the device (local webinos apps)

Requirement/architectural reference:

 NM-USR-IBBT-002 - It SHALL be possible to notify the user of application launch requests

 PS-USR-Oxford-36 - webinos APIs shall provide error results when an access control request is
denied

 PS-USR-Oxford-62 - Applications SHALL be isolated from each other. An application MUST NOT
be able to view or modify another application's data or execution state

Phase: 1

Webinos responsible: Michael Vakulenko, VisionMobile

Candidate

API
Short Description

Implementation

Status
Gaps Notes Decision

BONDI 1.1

applauncher

Module

A JavaScript API

that lists and

launches

applications

installed on a

mobile device. The

apps are identified

BONDI RI

(reference

implementation)

Use of MIME types

for identification of

apps is different

from webinos

approach where

apps are identified

using application

Proposal: webinos

API will be

modelled after

BONDI launcher API

with necessary

modifications to

reflect webinos

http://bondi.omtp.org/1.1/cr/apis/applauncher.html
http://bondi.omtp.org/1.1/cr/apis/applauncher.html
http://bondi.omtp.org/1.1/cr/apis/applauncher.html

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 53 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

by URI with well-

known MIME

types.

ID. approach.

Check installed app API

Description: API for checking if specific webinos application is installed in the device

Requirement/architectural reference:

 DA-DEV-SEMC-004 - webinos SHALL provide means for an Application to detect the availability
of a service.

 DA-ASP-FHG-006 - webinos SHALL provide means to discover devices that have a specific
application installed.

 DA-DEV-ISMB-002 - Applications installed on a device SHALL be discoverable, according to
security policies.

Phase: 1

Webinos responsible: Michael Vakulenko, VisionMobile

Candidate

API
Short Description

Implementation

Status
Gaps Notes Decision

BONDI 1.1

applauncher

Module

A JavaScript API

that lists and

launches

applications

installed on a

mobile device. The

apps are identified

by URI with well-

known MIME types.

BONDI RI

(reference

implementation)

BONDI API allows

to map apps to URI

names discovering

all registered apps.

webinos will allow

to check for

presence of a

specific webinos

app.

Proposal: webinos

API will be

modelled after

BONDI launcher API

with necessary

modifications to

reflect webinos

approach.

Phase 2 APIs

Activation Policies API

Description: API for discovery of current policy setting

Requirement/architectural reference:

 PS-USR-Oxford-112 - The webinos runtime environment SHALL be capable of specifying fine-
grained security policies on all features of devices and user data.

 PS-USR-Oxford-37 - webinos SHALL allow access control decisions to be logged

 PS-USR-Oxford-38 - webinos SHALL allow policies which specify confirmation at runtime by a
user when an access request decision is required

http://bondi.omtp.org/1.1/cr/apis/applauncher.html
http://bondi.omtp.org/1.1/cr/apis/applauncher.html
http://bondi.omtp.org/1.1/cr/apis/applauncher.html

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 54 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 PS-USR-Oxford-40 - Users SHALL be able to modify policies about events before they occur (e.g.
up-front policy specification)

 PS-USR-Oxford-52 - Users SHALL be able to modify policies to allow or deny access to further
functionality or data

 PS-USR-Oxford-75 - The webinos runtime SHALL be able to alert the user at runtime using a
visual notification

 PS-USR_DEV-Oxford-46 - Applications SHALL request for access rights to any device feature or
policy-controlled item prior to accessing it. Applications MUST be able to continue to work in a
limited manner if an access request to a feature is not granted.

Phase: 2

Webinos responsible: Michael Vakulenko, VisionMobile

Candidate API
Short

Description

Implementation

Status
Gaps Notes Decision

No suitable

candidate

identified

This API may be folded into general

policy control framework. The issue is

discussed with T3.5. If decided

otherwise, a new API will be specified for

this functionality

Native App Launcher API

Description: API for launching native applications installed in the device

Requirement/architectural reference:

 LC-DWP-ISMB-116 - Lifecycle operations regarding the webinos runtime itself SHALL nicely
integrate with the package management system of the underlying platform and SHALL follow
platform-specific common practices.

 PS-USR-Oxford-62 - Applications SHALL be isolated from each other. An application MUST NOT
be able to view or modify another application's data or execution state

Phase: 2

Webinos responsible: Michael Vakulenko, VisionMobile

webinos Intent API

Description: API for sending intents activating generic set of functions

Requirement/architectural reference: Need to clarify with T3.1

Phase: 2

Webinos responsible: Michael Vakulenko, VisionMobile

Candidate Short Description Implementation Status Gaps Notes Decision

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 55 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

API

Web

Introducer

Web Introducer concept was

initiated by Google. SEMC and

Mozilla is cooperating with Google

on the concept. The goal is to

make the concept a W3C

recommendation specification.

Web Introducer enables Web

applications to discover a user's

personal resources, no matter

where they are hosted or

produced, and gain permission to

interact with them via a one-click

user interaction.

Currently there is an

experimental pure

HTML+JS

implementation of the

Web Introducer API that

works in currently

deployed modern

browsers. Experimental

applications are:

- Share Link

- Get image

TBD

More detailed

information

about this API

is available at

Web

Introducer

Activation Test API

Description: API for checking if specific webinos application is running in the device

Requirement/architectural reference:

DA-DEV-SEMC-004 - webinos SHALL provide means for an Application to detect the availability of a

service.

Phase: 2

Webinos responsible: Michael Vakulenko, VisionMobile

Broadcast event reception API

Description: API for reception of system-wide events. This API is different from general event/messaging

API, which is intended to be used to deliver information between two running apps. Broadcast event

reception API is intended to deliver system-wide broadcast events, including starting an app that

registered event, in case the app is not running.

Requirement/architectural reference:

 NM-DEV-FOKUS-002 - It SHALL be possible to subscribe to certain event types in order to get
notified if the related event occurs.

 CAP-DEV-SEMC-202 - It MUST be possible to register a background application for automatic
execution at device start-up.

 CAP-DEV-SEMC-203 - webinos runtime MUST be able to start applications based on events, e.g.
an incoming message, detected wifi coverage, sensor connected etc.

 CAP-DEV-SEMC-204 - The webinos runtime SHALL be able to invoke applications by a timer
based event.

http://web-send.org/
http://web-send.org/
http://code.google.com/p/webintroducer/
http://code.google.com/p/webintroducer/
http://customer.web-send.org/
http://semccustomer.appspot.com/
http://web-send.org/
http://web-send.org/

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 56 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Phase: 2

Webinos responsible: Michael Vakulenko, VisionMobile

Supporting information

Candidate

API

Short

Description

Implementation

Status
Gaps Notes Decision

WAC 2.0

Device APIs:

Web

Standards/

2.8. URI

Schemes

URI schemes

are the

defined

method for

WAC

applications to

launch other

applications.

Specification is

Proposed

Released

Version

Just

local

apps.

The system defines which application is

started depending on scheme or file

type. E.g. dial would

start the dialer or <a

href="data:application/

pdf:...>open would open the

pdf data.

W3C DAP

The

Application

Launcher

API

A JavaScript

API for

launching

native

applicatinos

on a device.

W3C ED

Just

local

apps.

Current Editor's Draft allows to query

installed applications and set default

applications. So you can either let the

system decide which app to start or

explicitly start an application. But

multiple members of DAP want just URI

schemes, few voices suggest a module is

needed for mobile (See minutes and

current charter). Note by Claes

20110331: According to DAP phone

meeting 2011-03-30 there is a decision

to not include the App Launcher in the

charter.

Mozilla

Open Web

Apps

JavaScript

API

Open Web

Apps from

Mozilla is a

spec that can

package a

website and

make it

installable in

the browser.

The JavaScript

API handles

installation

and

Experimental

Firefox 4 add-on

Experimental

Google Chrome

extension

Besides listing and launching

applications, installing and uninstalling

other applications is also supported.

http://specs.wacapps.net/wac2_0/feb2011/core/web-standards.html
http://specs.wacapps.net/wac2_0/feb2011/core/web-standards.html
http://specs.wacapps.net/wac2_0/feb2011/core/web-standards.html
http://specs.wacapps.net/wac2_0/feb2011/core/web-standards.html
http://specs.wacapps.net/wac2_0/feb2011/core/web-standards.html
http://specs.wacapps.net/wac2_0/feb2011/core/web-standards.html
http://dev.w3.org/2009/dap/app-launcher/
http://dev.w3.org/2009/dap/app-launcher/
http://dev.w3.org/2009/dap/app-launcher/
http://dev.w3.org/2009/dap/app-launcher/
http://dev.w3.org/2009/dap/app-launcher/
http://www.w3.org/2010/11/05-dap-minutes.html
http://www.w3.org/2010/11/DeviceAPICharter.html
https://developer.mozilla.org/en/OpenWebApps/The_JavaScript_API
https://developer.mozilla.org/en/OpenWebApps/The_JavaScript_API
https://developer.mozilla.org/en/OpenWebApps/The_JavaScript_API
https://developer.mozilla.org/en/OpenWebApps/The_JavaScript_API
https://developer.mozilla.org/en/OpenWebApps/The_JavaScript_API
https://apps.mozillalabs.com/
https://apps.mozillalabs.com/
https://apps.mozillalabs.com/addons/firefox.html
https://apps.mozillalabs.com/addons/firefox.html
https://apps.mozillalabs.com/addons/chrome.html
https://apps.mozillalabs.com/addons/chrome.html
https://apps.mozillalabs.com/addons/chrome.html

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 57 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

management

functions.

BONDI 1.1

applauncher

Module

A JavaScript

API that lists

and launches

native

applications

on a mobile

device.

BONDI RI

(reference

implementation)

Just

local

apps.

Doesn't support setting default

applications. Application can be

explicitly started. E.g.
bondi.applauncher.

launchApplication(succCallB,

errCallB,

"file:/bin/fpsgame");

http://bondi.omtp.org/1.1/cr/apis/applauncher.html
http://bondi.omtp.org/1.1/cr/apis/applauncher.html
http://bondi.omtp.org/1.1/cr/apis/applauncher.html

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 58 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Background tasks

Description: To run task in background. This is an independent entity and result of worker thread is

updated to event.

Requirement/architectural reference: CAP-DEV-FHG-200 The webinos runtime SHALL be able to run

applications in the background.

Phase: 2

Webinos responsible: N.N.

Candidate

API
Short Description

Implementation

Status
Gaps Notes Decision

W3C Web

Workers

Web Workers

instantiate scripts which

run in parallel and does

not require any input

from UI or script

handling page. To

handle I/O operation it

can make use of

XMLHttpRequest to get

output. Results of

Worker thread are

updated to the

subscribed event.

Implementation of

Web Workers is

present in all

browsers, some

have basic

functionality and

some support

shared worker

functionality

None identified,

except it has

quite high

performance

startup time

and high

memory

consumption.

Web workers are

intended to

facilitate multi-

threading in Web

apps. This is good

for background

tasks that do not

require to update

the DOM tree/UI

directly. However,

Web workers are

not feasible for

background jobs

that needs to be

started at system

start up etc.

Discovery APIs

Description
This section contains investigation results on APIs for device and service discovery.

Resources
Primary contributor/editor for this API category: Samsung

Supporting contributors/reviewers: Fraunhofer / SEMC / T-Systems / W3C / DoCoMo

Overview of Discovery Technologies
Each interconnect technology can have its own discovery mechanisms, and some have several, each

with their own terminology. Webinos will need to provide an overlay that abstracts away from the

variations and which offers simple naming for end users and Web developers. The overlay will need to

http://dev.w3.org/html5/workers/
http://dev.w3.org/html5/workers/
http://caniuse.com/#search=webworkers
http://caniuse.com/#search=webworkers
http://www.whatwg.org/specs/web-workers/current-work/
http://www.whatwg.org/specs/web-workers/current-work/
http://www.whatwg.org/specs/web-workers/current-work/
http://www.whatwg.org/specs/web-workers/current-work/
http://www.whatwg.org/specs/web-workers/current-work/
http://www.whatwg.org/specs/web-workers/current-work/

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 59 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

store the mapping from user-friendly names to the underlying data registered for the device and

needed to communicate with it.

Interconnect technologies include:

 3G, WiFi, WiMAX, Bluetooth, ZigBee, NFC, RJ45, USB, IEEE 1394, ...

Only some of these support IP directly. Webinos should provide a means for an IP accessible device to

proxy for devices that are not IP addressable.

IP based networks

For IP based networks, three such mechanisms are:

Multicast DNS

Invented by Apple for simplifying the connection of devices in home networks. The Apple

implementation is called "Bonjour". An open source equivalent is "Avahi". Devices start by randomly

picking a link local IP address in the range (169.254.*.*) and making an ARP request to see if this address

is already in use.

Devices assign themselves name in the ".local" domain, and will adjust this if they detect other devices

with the same name. Users can assign human meaningful names with spaces in them. User agents query

for devices with multicast UDP requests. The devices check for a match and respond with a multicast

UDP packet with the IP address and port number, the device's domain name, and a list of protocol

and/or service names. The device domain names use human meaningful conventions e.g. "Dave's

laptop._workstation.local". A nice feature is the ability for a device to report on other devices including

external services such as the BBC news on the Web, or a hotel's local Web server giving details of the

hotel's services. Multicast DNS isn't designed to support tens of thousands of devices, but this can be

worked around with discovery hubs.

More information:

 Introductory talk

 Stuart Cheshire's website

 Avahi introduction

On Linux, try

mdns-scan

or

avahi-browse -a –v

This only found my Linux workstation on my WiFi network and not the ADSL Modem, nor the Samsung

laser printer.

http://video.google.com/videoplay?docid=-7398680103951126462
http://www.multicastdns.org/
http://avahi.org/download/doxygen/

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 60 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Simple Service Discovery Protocol (SSDP)

Invented by Microsoft and considerably more complicated than Multicast DNS. SSDP is a UPnP-based

protocol and it uses HTTP for notification announcements that give a service type URI and a unique

service name.

On linux try

gssdp-device-sniffer

On my WiFi network this found the ADSL Modem and the Laser printer, but not the Linux workstations.

Service Location Protocol (SLP)

Defined in RFC 2608 and supported by Hewlett-Packard's network printers, Novell, and Sun

Microsystems, but ignored by some other large vendors. SLP works over UDP or TCP. On UDP, devices

listen on port 427 for multicast requests. Devices advertise themselves with a URI like

service:printer:lpr://myprinter/myqueue

This may be supplemented by a list of attributes, e.g.

 (printer-name=Hugo),

 (printer-natural-language-configured=en-us),

 (printer-location=In my home office),

 (printer-document-format-supported=application/postscript),

 (printer-color-supported=false),

 (printer-compression-supported=deflate, gzip)

If the data doesn't fit in a single packet, a flag is given that the user agent can act on to request the SLP

info via TCP. SLP also supports discovery agents and presumably this helps with scaling up to larger

networks with bridged local networks.

UPnP and DLNA

On linux try

upnp-inspector

On my network this found the ADSL modem but not my laser printer.

Other interconnect technologies

WiFi

For WiFi it is possible to detect access points and what kind of encryption they are using, if any, as well

as devices operating in ad-hoc mode. It should be possible to detect device MAC addresses.

USB

For USB see the source code for the Linux lsusb command. This lists the bus and device number, the

device ID and a human readable description e.g. Logic3 / SpectraVideo plc A4Tech SWOP-3 Mouse, and

Microdia Sonix Integrated Webcam.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 61 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Bluetooth

For Bluetooth, a scan shows the device ID and type, e.g. phone. This id can be used as a proxy identifier

for people, i.e. who is present in the room or nearby. There is a small set of known device types, e.g.

phone, input device, headset, modem, computer, network, camera, printer or video device. Users can

provide a meaningful name for their device e.g. "Me" as seen for a phone in a car that drove past my

window!

APIs based on existing standards/implementations

Low level Service Advertising APIs

Description: Service to advertise its availability and capabilities APIs

Requirement/architectural reference:

 DA-DEV-SEMC-001. The webinos network SHALL provide means for a service to expose its
availability and capabilities on a webinos network.

Phase: webinos phase 1

Webinos responsible: Ziran/Samsung

Candidate

API
Short Description

Implementation

Status
Gaps Notes Decision

Avahi

Register

Services

API based

on DNS-SD

It uses DNS service

locator (SRV), Text

Record(TXT), and

Pointer recorder (PTR)

records to advertise

Service Instance

Names. The hosts

offering services

publish details of

available services:

instance, service type,

domain name and

optional configuration

parameters. In case of

mDNS, each computer

on the LAN stores its

own list of DNS

resource records (e.g.,

A, MX, SRV) and joins

the mDNS multicast

group. If a unicast DNS

is available, two ways

to advertise services:

Avahi had already

become the de-

facto standard

implementation of

mDNS/DNS-SD on

free operating

systems such as

Linux.

Native Codes. It

suits Local or

wide-area

network with the

same domain.

This is low

level API -

one option

is to wrap

native code

and expose

as

JavaScript

Object

method -

here is an

example

To be

considered for

phase 2

http://avahi.org/download/doxygen/index.html
http://avahi.org/download/doxygen/index.html
http://avahi.org/download/doxygen/index.html
http://avahi.org/download/doxygen/index.html
http://www.zeroconf.org/
http://www.w3.org/QA/2011/04/discovery_and_the_web_of_thing.html

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 62 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

via dynamic DNS

server or manually add

DNS records to

describing the services

to add.

Strophe.js

API for

XEP-0124

BOSH

Strophe.js provides

Javascript library for

BOSH implementation,

which enable XMPP

over HTTP. For service

advertisement, XEP-

0060 Publish-

subscribe APIs shall be

implemenated on the

top the existing

Strophe.js library. XEP-

0060 Publish-

subscribe specifies

that an entity

publishes information

to a node at a publish-

subscribe service. The

pubsub service pushes

an event notification

to all entities that are

authorized to learn

about the published

information.

Strophe.js is well

used. It has been

tested on Firefox

1.5, 2.x, and 3.x, IE

6, 7, and 8, Safari,

Safari Mobile,

Google Chrome,

and it should also

work on the mobile

Opera browser as

well as the desktop

Opera browser.

Strophe.js does

not needs

particular support

for specific XEP.

Expanding XEP-

0060

implementation

based on

Strophe.js should

be

straightforward

No API will be

developed by

WP3.2 as a

downloadable

JS library is

available

Low level Find Service API

Description: Allows applications to find services based on description

Requirement/architectural reference:

 DA-DEV-SEMC-002. webinos SHALL provide the means to discover new service advertised on a
webinos network.

 DA-DEV-FHG-001. webinos shall provide means for applications to be capable of discovering
other devices based on a User.

 DA-USR-ISMB/FHG-005. webinos shall provide means for an application to discover and address
applications and services offered by other users.

Phase: webinos phase 1

Webinos responsible: Ziran/Samsung

http://strophe.im/strophejs/
http://strophe.im/strophejs/
http://xmpp.org/extensions/xep-0124.html
http://xmpp.org/extensions/xep-0124.html
http://xmpp.org/extensions/xep-0060.html
http://xmpp.org/extensions/xep-0060.html
http://xmpp.org/extensions/xep-0060.html

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 63 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Candidate

API
Short Description

Implementation

Status
Gaps Notes Decision

Avahi

Browse

Services

API based

on DNS-SD

To browse for

available services. In

case of mDNS,

Updates about the

new service

availability is done by

sending the multicast

advertisement

same as

advertisement

same as

advertisement

To be

considered for

phase 2

Strophe.js

API for

XEP-0124

BOSH"

To find service, XEP-

0030: Service

discovery API shall be

implemented on the

top of Strophe.js. XEP-

0030 specifies

discovering service via

JID. (1) the identity

and capabilities of an

entity, including the

protocols and

features it supports;

and (2) the items

associated with an

entity, such as the list

of rooms hosted at a

multi-user chat

service.

Strophe.js has

been tested on

most well-used

browsers (see

above).

Strophe.js does

not needs

particular support

for specific XEP.

To implement

discovery over

BOSH, simply

send IQ-get

stanzas to the

server with a

certain

namespace.

No API will be

developed by

WP3.2 as a

downloadable

JS library is

available

APIs for which no existing standards/implementations exist

High level Discovery API

Description

Currently there exist several methods to do service discovery. This has been explored in the state of the

art investigation for service discovery. Some of these methods are fairly well deployed and used such as

Bluetooth service discovery, Universal Plug & Play, mDNS or DNS Service Discovery. However, neither of

these discovery methods has been exposed to Web application developers. In addition methods like

Universal Plug & Play, mDNS and DNS SD do not have any robust security model.

The goal with the webinos high-level service discovery API is to be able to provide a simple API for

application developers. The API shall provide the means to discovery services within personal zones and

http://avahi.org/download/doxygen/index.html
http://avahi.org/download/doxygen/index.html
http://avahi.org/download/doxygen/index.html
http://avahi.org/download/doxygen/index.html
http://www.zeroconf.org/
http://strophe.im/strophejs/
http://strophe.im/strophejs/
http://xmpp.org/extensions/xep-0124.html
http://xmpp.org/extensions/xep-0124.html
http://xmpp.org/extensions/xep-0030.html
http://xmpp.org/extensions/xep-0030.html
http://xmpp.org/extensions/xep-0030.html

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 64 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

from low level service discovery methods supported by the device. The fact webinos uses a overlaying

network, service discovery will not be limited to local services but will also enable to discover remote

services. The API hides the complexity for communicating with services residing in a different peer in a

trusted manner.

Requirement/architectural reference

The following 2.2 requirements are applicable for the high level Discovery API.

Phase: webinos phase 1

 DA-DEV-SEMC-001: The webinos network SHALL provide means for a Service to Expose its
availability and capabilities on a webinos Network.

 DA-DEV-SEMC-002: webinos SHALL provide the means to discover new services advertised on a
webinos Network.

 DA-DEV-SEMC-004: webinos SHALL provide means for an Application to detect the availability of
a service (such as being able to detect when a service is started, stopped or not available due to
out of proximity).

 DA-DEV-SEMC-005: webinos shall provide means for an Application to find devices and services
that are available on a webinos network, based on the Device and Service Description.

 DA-DEV-SEMC-006: webinos SHALL provide means for an Application to find devices and
services in close proximity of the device

 DA-DEV-SEMC-007: webinos SHALL provide means for an Application to find devices and
services based on the physical location of the current user device.

 DA-ASP-FHG-001: webinos SHALL provide means for applications to be capable of discovering
other devices based on a User.

 DA-ASP-FHG-006: webinos SHALL provide means to discover devices that have a specific
application installed.

 DA-DEV-ISMB-001: webinos SHALL provide means for applications to discover and address
features and services available on devices owned by the user even if such devices are not
directly connected to the device on which the application is running.

 DA-DEV-ISMB-004: It SHALL be possible to address sensors and actuators, which do not provide
webinos support.

 DA-DEV-ISMB/FHG-005: webinos SHALL provide means for applications to discover and address
applications and services offered by other users.

 DA-DEV-ISMB-006: It SHALL be possible to address webinos enabled devices based on their user
information.

 DA-DEV-NTUA-002: webinos SHALL provide the means to Applications to identify an event
occurring in a device.

Phase: webinos phase 2

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 65 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 DA-DEV-SEMC-008: webinos SHALL provide means for an Application to discover which user
that currently is using a discovered device outside the personal webinos Network.

 DA-DEV-ISMB-003: Applications installed on a device SHALL be addressable, with multiple
instances of the same application being separately addressable.

 DA-DEV-NTUA-003: webinos SHALL provide the means to Applications to be capable of
discovering other devices based on a piece of contextual information.

 DA-DEV-NTUA-004: webinos SHALL be able to calculate the social proximity of webinos Devices.

Webinos responsible/editor: Anders Isberg / SEMC

Security and Privacy APIs

Description
This section contains an overview of the required APIs for the webinos security architecture and

background information about related work.

Resources
Primary contributor/editor for this API category: Oxford

Supporting contributors/reviewers: Polito, DOCOMO

Aims for Security and Privacy APIs
The following requirements must be satisfied:

 PS-DEV-VisionMobile-11: webinos applications SHALL have access to the standardized webinos
user privacy preferences

 PS-DEV-Oxford-56: Applications shall be aware of changes to policies and may alter their
behaviour as a result

 ID-DEV-POLITO-005: A webinos device may be able to provide Attestation of the webinos
platform.

However, the first two of these requirements have been moved to phase 2 of the implementation as the

security architecture is further clarified.

In addition, various requirements (PS-USR-Oxford-103, PS-USR-Oxford-26) require users to authenticate

through device-specific capabilities. Therefore, an authentication API has been specified.

Aims for Security and Privacy APIs in phase 2
The following proposals will be investigated in phase 2 of the webinos platform:

 Expose user privacy preferences to applications, including data retention policies and access
control.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 66 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

o Provide applications with the ability to query the obligations they will be under should
they use a particular data item.

o Provide applications with the ability to query their own permissions - what have they
been granted access to.

 Expose device security capabilities

o Statements about whether the device can provide certain security features and to what
level of assurance is provided. The main challenge with implementing this would be
validating the results.

o These features might include (a) authentication methods, (b) attestation, (c) secure
storage, (d) isolated execution, (e) auditing and logging, (f) event reporting / monitoring
of platform state, (g) credentials for keys held in the platform & revocation lists.

 Depending on future use cases and requirements, webinos may choose to expose certain
cryptography APIs to applications.

 Remote management APIs, perhaps like the Android Device Admin API

Existing standards
The following APIs for security (e.g. cryptography and authentication) and for attestation exist.

 APIs for cryptography and transport sessions

o javax.crypto for cryptography

o javax.crypto.interface for Diffie-Hellman

o javax.crypto.spec for specification of crypto-parameters

o java.net.ssl for SSL/TLS

 APIs for authentication

o java.security.auth for authentication credential management

 APIs for policy management

o android.app.admin to manage device policies

 APIs for DRM

o android.drm for Digital Rights management

 Device status and attestation

o WAC device status API as currently suggested in HW_Resource_APIs.

o Trusted Computing Group Trusted Software Stack .

 Secure coding APIs

o OWASP ESAPI - useful for input validation, credit card validation, etc.

http://developer.android.com/guide/topics/admin/device-admin.html
http://developer.android.com/reference/javax/crypto/package-summary.html
http://developer.android.com/reference/javax/crypto/interfaces/package-summary.html
http://developer.android.com/reference/javax/crypto/spec/package-summary.html
http://developer.android.com/reference/javax/net/ssl/package-summary.html
http://developer.android.com/reference/javax/net/ssl/package-summary.html
http://developer.android.com/reference/javax/net/ssl/package-summary.html
http://developer.android.com/reference/android/drm/package-summary.html
http://specs.wacapps.net/wac2_0/feb2011/deviceapis/devicestatus.html
../Lokale%20Einstellungen/Temp/.html
http://www.trustedcomputinggroup.org/resources/tcg_software_stack_tss_specification
http://www.owasp.org/index.php/ESAPI#tab=Downloads

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 67 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

APIs for which no existing standards/implementations exist

Attestation API

Description: The purpose of this API is to provide a secure means to query the device to find out the

identity and integrity of running software. The example use case is Trusted Computing Mobile Reference

Architecture. However, this is aimed at a lower layer than webinos. The aim of the attestation API is

simply to allow access to existing functionality.

Requirement/architectural reference: ID-DEV-POLITO-005, ID-DEV-POLITO-006, ID-DEV-POLITO-007, ID-

DEV-POLITO-008

Phase: webinos phase 1

Webinos responsible/editor: John Lyle

High level Requirement Notes

This API shall be capable of exposing basic TCG attestation capabilities

This API shall not rely upon a specific hardware implementation

This API shall provide applications with the ability to fetch authenticated data about the runtime

state of the platform

Authentication API

Description: Provides information to applications about the current authentication status of users, as

well as allowing applications to request re-authentication..

Requirement/architectural reference: PS-USR-Oxford-103, PS-USR-Oxford-26

Phase: 1

Webinos responsible/editor: John Lyle

High level Requirement Notes

This API shall allow applications to request that the user authenticate to the device

This API shall allow applications to find out when and how the user last authenticated

This API shall not expose identity information about the user

User profile and context APIs

Description
This section contains investigation results on user profile APIs and context APIs.

http://www.trustedcomputinggroup.org/resources/mobile_phone_work_group_mobile_reference_architecture
http://www.trustedcomputinggroup.org/resources/mobile_phone_work_group_mobile_reference_architecture

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 68 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

The user profile API defines attributes and methods to access to user related information (e.g. name,

nickname, gender birthday, etc.) while the application data API provide information about application

related information (e.g. installed application).

Resources
Primary contributor/editor for this API category: T-Systems

Supporting contributors/reviewers: DoCoMo, NTUA

Analysis of requirements from WP2.2
The table below lists relevant requirements identified in WP2.2 and the compliance status based on

current proposal.

Requirement Description
Compliance

Status
Notes

CAP-DEV-

SEMC-010

webinos SHALL provide

means for applications to

access user’s profile data.

Phase 1

CAP-DEV-

SEMC-011

webinos SHALL provide

means for applications to

access user’s preference

data

Phase 2

An secure and optimal method to store user

preferences must be found to provide privacy

aspects and avoid a blow up of user

preferences (e.g. different applications would

like to store the same information in the user

preferences -> ColorBlind:RedGreen is the

same as ColorBlind:GreenRed).

ID-USR-

POLITO-100

webinos components that

have to be shared or

referenced (device,

application, data, user)

SHALL be identifiable.

Phase 1 The user profile has a unique id.

DA-DEV-

ambiesense-

040

It MUST be possible for

applications to share

context information across

devices, so that for

instance social context can

be updated when friends

enter/ leave the same

situation.

Phase 2

In phase 1 the user profile API implements

social contact information. Further contextual

information must be evaluated for phase 2.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 69 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

PS-DEV-

Oxford-86

The webinos runtime

SHALL support the

confidential storage of user

credentials including

usernames and passwords.

Phase 2
A secure method to store login credentials

must be evaluated for phase 2.

PS-USR-IBBT-

005

The webinos system

SHOULD store associations

between device, user and

context information

securely and provide this

information based on user

preferences.

Phase 2 Same as CAP-DEV-SEMC-011.

PS-USR-

VisionMobile-

10

webinos SHALL allow users

to express their privacy

preferences in a consistent

way.

Phase 2 Same as CAP-DEV-SEMC-011.

PS-USR-

VisionMobile-

11

webinos applications

SHALL be able to query the

webinos user privacy

preferences.

Phase 2 Same as CAP-DEV-SEMC-011.

NC-DEV-IBBT-

0015

Applications MUST be able

to access the user's general

webinos preferences (with

the permission of the

user).

Phase 2 Same as CAP-DEV-SEMC-011.

Phase 1 APIs

APIs for which no existing standards/implementations exist

User Profile API

Description: User Information

*Requirement/architectural reference:

 CAP-DEV-SEMC-010: webinos SHALL provide means for applications to access user’s profile
data.

 ID-USR-POLITO-100: webinos components that have to be shared or referenced (device,
application, data, user) SHALL be identifiable.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 70 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Phase: webinos phase 1

Webinos responsible: Ronny Gräfe / George Gionis

Candidate

API
Short Description Implementation Status Gaps Notes Decision

W3C

Contacts

API

Contacts provides a basic list

of information about a person,

but is insufficient for webinos

needs.

Contacts provide only 'real

life' information about a user,

but no technical information

(like preferences). It also

doesn't allow granularity of

access. And has no specific

API for the user (as opposed

to other contacts).

Decision was

made to build

own API for

webinos, based

on elements

from Contact

and Portable

Contacts. See

note below

table.

Portable

Contacts

The reference presented by

George Gionis added account

information for user accounts

for external social network

profiles, which is useful for

context awareness and

calculation of social proximity.

We can base user profile

information on the account

information suggested by

portable contacts..

Decision was

made to build

own API for

webinos, based

on elements

from Contact

and Portable

Contacts. See

note below

table.

The data accessible through the API for user profiles will be based on the W3C contacts information with

additional information for social network profiles based on Portable Contacts.

Phase 2 APIs

User Profile API

Description: User Information

*Requirement/architectural reference:

 CAP-DEV-SEMC-011: webinos SHALL provide means for applications to access user’s preference
data.

 DA-DEV-ambiesense-040: It MUST be possible for applications to share context information
across devices, so that for instance social context can be updated when friends enter/ leave the
same situation.

http://dev.w3.org/2009/dap/contacts/
http://dev.w3.org/2009/dap/contacts/
http://dev.w3.org/2009/dap/contacts/
http://portablecontacts.net/draft-spec.html
http://portablecontacts.net/draft-spec.html

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 71 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 PS-DEV-Oxford-86: The webinos runtime SHALL support the confidential storage of user
credentials including usernames and passwords.

 PS-USR-IBBT-005: The webinos system SHOULD store associations between device, user and
context information securely and provide this information based on user preferences.

 PS-USR-VisionMobile-10: webinos SHALL allow users to express their privacy preferences in a
consistent way.

 PS-USR-VisionMobile-11: webinos applications SHALL be able to query the webinos user privacy
preferences.

 NC-DEV-IBBT-0015: Applications MUST be able to access the user's general webinos preferences
(with the permission of the user).

Phase: webinos phase 2

Webinos responsible: N.N.

Candidate API Short Description Implementation Status Gaps Notes Decision

No suitable API identified

7. Tools for API specifications
The tools used to create the webinos specifications are:

 widlproc

 Redmine with Git

All mentioned tools are open source software and available for Windows, Mac OS and Linux.

Web IDL/widlproc
The webinos API specifications are written in Web IDL (http://www.w3.org/TR/WebIDL/), an interface

definition language. It is the same language that is used by the W3C. These Web IDL files are further

annotated with explanatory comments that cover the meaning of each interface module, attribute,

method, method argument and method return type.

Having the specifications in Web IDL enables using tools to generated code stubs from the interfaces

wich can be used as a basis for implementing the webinos API specifications.

The widlproc command line tool (http://widl.webvm.net/) is used to generate HTML documentation

from the Web IDL file. Viewing and referencing these HTML pages is much more comfortable and they

can be used as a guide and documentation for both developers that want to implement those APIs or

developers that want to use these APIs.

http://www.w3.org/TR/WebIDL/
http://widl.webvm.net/

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 72 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

This approach is quite flexible and scriptable: e.g. it is very easy to create scripts that process many Web

IDL files and based on that auto-generate the documentation. It also allows for a webinos own look &

feel by customizing the CSS and HTML that is generated.

Git and Redmine Infrastructure
The webinos project members use Redmine as collaboration platform. Redmine is a web-based project

management tool providing a wiki, bug-tracking, etc. It is the installation that is running behind

http://dev.webinos.org.

Git is used to track and manage the Web IDL files for the API specifications. Git is a distributed revision

control system (http://git-scm.com). Project members submit their changes to the repository on

dev.webinos.org and pull changes other members have contributed, so that everybody has a consistent

state of the ongoing specification process.

Every time a change is submitted to the server the widlproc tool (see above) is used to generate new

HTML documentation for the API specifications that can then be viewed by everybody at

http://dev.webinos.org/specifications/draft/.

Since Redmine provides all these features readily integrated, it makes it easy and comfortable for users

and administrators of the system at the same time. Users quickly find all relevant informations at their

fingertips since wiki pages, issues management and task management, calendars and the source

repository are all linked together and can reference each other. The webinos server administrators on

the other hand only need to take care of a single piece of software, which saves quite some time. It is

also easy to extend the basic functionality with provided plugins. The Redmine software is actively

maintained by its authors and enjoys great distribution.

8. JS API design patterns and guidelines

During the webinos API specification work common patterns and design criteria have been followed.

webinos APIs are specified through WebIDL together with text descriptions that define the behaviour of

the API interfaces, methods and attributes. Apart from the webinos defined APIs, webinos refers to

other APIs defined by other parties (e.g. W3C and WAC). Webinos is not going to modify those APIs, so

some of them may not be aligned with the patterns defined for webinos. In most of the cases, the

webinos design patterns and guidelines do not prescribe a unique solution for the different API

characteristics, but describes what are the feasible alternatives, what are the preferred one(s) and the

situations in which different alternatives should be used.

The webinos API patterns and guidelines are described in this document: Device APIs - Design Patterns

and Guidelines

http://dev.webinos.org/
http://git-scm.com/
http://dev.webinos.org/specifications/draft/
http://dev.webinos.org/specifications/draft/patterns.html
http://dev.webinos.org/specifications/draft/patterns.html

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 73 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

9. List of webinos phase 1 API specifications

This sections lists all webinos API specifications included in the webinos WP 3.2 delivery.

Webinos API specifications are of two major types:

 A new API specification created within the webinos project.

 A wrapper specification that references an existing API specification defined elsewhere, e.g. by
W3C or WAC. Optionally a wrapper specification can define webinos modifications to the
referred specification.

All webinos API specifications are available here: webinos Device APIs

webinos base and generic objects/interfaces

API name Specification Editor Comments

webinos core API module webinos Core module. Claes Nilsson/SEMC

Discovery and access to remote services

API name Specification Editor Comments

Service discovery API webinos Discovery module. Anders Isberg/SEMC

HW Resource APIs

API name Specification Editor Comments

Geolocation API W3C Geolocation API W3C Geolocation WG

Device Orientation

API

W3C DeviceOrientation

Event

W3C Geolocation WG

Generic

SensorActuator API
webinos Sensor module Claes Nilsson/SEMC

Media Capture API W3C Media Capture W3C DAP WG

Devicestatus API
WAC 2.0 devicestatus

module

WAC

Devicestatus

vocabulary

webinos Device Status

Vocabulary

WAC, Stefano

Vercelli/TIM

WAC 2.0 devicestatus module

with added webinos aspects

http://dev.webinos.org/specifications/draft/
http://dev.webinos.org/specifications/draft/webinoscore.html
http://dev.webinos.org/specifications/draft/servicediscovery.html
http://dev.webinos.org/specifications/draft/geolocation.html
http://dev.webinos.org/specifications/draft/deviceorientation.html
http://dev.webinos.org/specifications/draft/deviceorientation.html
http://dev.webinos.org/specifications/draft/sensors.html
http://dev.webinos.org/specifications/draft/mediacapture.html
http://dev.webinos.org/specifications/draft/devicestatus.html
http://dev.webinos.org/specifications/draft/devicestatus.html
http://dev.webinos.org/specifications/draft/vocabulary.html
http://dev.webinos.org/specifications/draft/vocabulary.html

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 74 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Device Interaction

API

WAC waikiki

deviceinteraction module

WAC

TV and STB control

API

webinos TV Control

module

Alexander Futasz/FHG

Vehicle API webinos Vehicle module Simon Isenberg/BMW

NFC API webinos NFC module

Stefano Vercelli/TIM,

Hans

Myrhaug/AmbiSense

Application Data APIs

API name Specification Editor Comments

Contacts API W3C Contacts API W3C DAP WG

Calendar API W3C Calendar API W3C DAP WG

Messaging API
webinos Messaging

module

WAC, Christian

Fuhrhop/FHG

WAC 2.0 Messaging module with

webinos modifications

File Reader API W3C File API W3C Web Apps WG

File Writer API W3C File API: Writer W3C Web Apps WG

File API: Directories

and System

W3C File API: Directories

and System

W3C Web Apps WG

Gallery API W3C Gallery API W3C DAP WG

Payment API
webinos Payment

module

Christian

Fuhrhop/FHG

Communication APIs

API name Specification Editor Comments

Event handling API webinos Event Handling module Stefano D'Angelo/ISMB

Application Execution APIs

API name Specification Editor Comments

http://dev.webinos.org/specifications/draft/deviceinteraction.html
http://dev.webinos.org/specifications/draft/deviceinteraction.html
http://dev.webinos.org/specifications/draft/tv.html
http://dev.webinos.org/specifications/draft/tv.html
http://dev.webinos.org/specifications/draft/vehicle.html
http://dev.webinos.org/specifications/draft/nfc.html
http://dev.webinos.org/specifications/draft/contacts.html
http://dev.webinos.org/specifications/draft/calendar.html
http://dev.webinos.org/specifications/draft/messaging.html
http://dev.webinos.org/specifications/draft/messaging.html
http://dev.webinos.org/specifications/draft/filereader.html
http://dev.webinos.org/specifications/draft/filewriter.html
http://dev.webinos.org/specifications/draft/filedirandsystem.html
http://dev.webinos.org/specifications/draft/filedirandsystem.html
http://dev.webinos.org/specifications/draft/gallery.html
http://dev.webinos.org/specifications/draft/payment.html
http://dev.webinos.org/specifications/draft/payment.html
http://dev.webinos.org/specifications/draft/events.html

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 75 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Widget execution

API
webinos Widget module Andre Paul/FHG

Based on W3C Widget

Interface

Application

Launcher API

webinos AppLauncher

module

Michael

Vakulenko/VisionMobile
Based on BONDI 1.1

Security and Privacy APIs

API name Specification Editor Comments

Platform attestation API webinos Attestation module John Lyle/Oxford

User Authentication API webinos Authentication module DOCOMO, Oxford (John)

User Profile and Context APIs

API name Specification Editor Comments

User Profile

API

webinos Userprofile

module

Ronny Gräfe/T-

Systems

Based on W3C DAP Contacts and

Portablecontacts

Context API
webinos Context

module

Heiko

Desruelle/IBBT

Uses W3C SPARQL specification as context

query language

http://dev.webinos.org/specifications/draft/widget.html
http://dev.webinos.org/specifications/draft/launcher.html
http://dev.webinos.org/specifications/draft/launcher.html
http://dev.webinos.org/specifications/draft/attestation.html
http://dev.webinos.org/specifications/draft/authentication.html
http://dev.webinos.org/specifications/draft/userprofile.html
http://dev.webinos.org/specifications/draft/userprofile.html
http://dev.webinos.org/specifications/draft/context.html
http://dev.webinos.org/specifications/draft/context.html
http://www.w3.org/TR/rdf-sparql-query

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 76 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

10. APIs Specified by webinos

API Summary

Specification Summary

The attestation

module

The attestation API provides a secure method of querying the underlying device

hardware to find out the identity and integrity of running software.

This API should allow applications to communicate with hardware security

systems, such as a Trusted Platform Module (defined in the Trusted Computing

Group specifications).

The

authentication

module

Authentication API for providing applications with information about whether

the current user has authenticated, and requesting re-authentication at runtime.

The context

module

The Context API defines the high-level interfaces required to obtain access to a

user's context data. The API supports two basic ways of accessing context data:

The Context API defines the high-level interfaces required to obtain access to a

user's context data. The API supports two basic ways of accessing context data:

The events

module

The webinos Event Handling API provides means to exchange data in terms of

events among addressable entities (e.g., applications, services), either locally or

remotely.

The

AppLauncher

module

The application execution API allows activation of webinos applications

installed locally on the device. The API is modelled after BONDI v1.1

AppLauncher API.

The messaging

module

The messaging API provides access to the following capabilities: Sending

messages through different technologies: SMS, MMS, Email and Instant

Messages. Search for messages in the different folders. Subscribe for being

notified upon incoming message events.

The nfc module

Near Field Communication is a kind of radio-frequency identification (RFID)

technology that uses short-hold wireless communication to transfer messages

between wireless NFC devices and NFC tags. The wireless tags are physically

attached onto/ mounted nearby a physical object.

The payment

module

This API provides generic shopping basket functionality to provide in-app

payment.

The sensors

module

The webinos Generic Sensor API provides Web applications with an API to

access data from sensors in the device, connected to the device or in another

http://dev.webinos.org/specifications/draft/attestation.html
http://dev.webinos.org/specifications/draft/attestation.html
http://dev.webinos.org/specifications/draft/authentication.html
http://dev.webinos.org/specifications/draft/authentication.html
http://dev.webinos.org/specifications/draft/authentication.html
http://dev.webinos.org/specifications/draft/context.html
http://dev.webinos.org/specifications/draft/context.html
http://dev.webinos.org/specifications/draft/events.html
http://dev.webinos.org/specifications/draft/events.html
http://dev.webinos.org/specifications/draft/launcher.html
http://dev.webinos.org/specifications/draft/launcher.html
http://dev.webinos.org/specifications/draft/launcher.html
http://dev.webinos.org/specifications/draft/messaging.html
http://dev.webinos.org/specifications/draft/messaging.html
http://dev.webinos.org/specifications/draft/nfc.html
http://dev.webinos.org/specifications/draft/payment.html
http://dev.webinos.org/specifications/draft/payment.html
http://dev.webinos.org/specifications/draft/sensors.html
http://dev.webinos.org/specifications/draft/sensors.html

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 77 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Specification Summary

device.

The discovery

module

The webinos Discovery API provide Web applications with an API to discover

services without any previous knowledge of the service. The Discovery API is

not limited to discovery of local services but also enables discovery of remote

services.

The tv module

The interface provides means to acquire a list of tv sources, channels and their

streams.

The userprofile

module

This API offers access to information of the user. UserProfile API is an

extension of webinos Contact API to gather basic information about the user

(e.g. name, nickname, gender, birthday, etc.) and extends it with social network

attributes from Portablecontacts from August 5, 2008

(http://portablecontacts.net/draft-spec.html). These social network attributes are

a simple pointer where the webinos user has non-webinos profiles. These

information could be used by an application to query an external API for an

additional information (e.g. query the Facebook Graph API for the buddylist).

The vehicle

module

The webinos vehicle API provides access to specific vehicle data. It is derived

from W3C's DOM Level 3 Events model and defines event types for retrieving

information about the vehicle including trip computer data, gears or park

sensors. Furthermore it offers methods for interacting with the on-board

navigation system. The geolocation, speed and acceleration can be retrieved

using the geolocation and device orientation API.

The

webinoscore

module

This specification defines the common interface from which all webinos APIs

are can be accessed as well as several interfaces that are commonly reused.

The widget

module

This specification defines the common widget interface. The webinos

application packaging is based on W3C Widget Specifications, thus, the

interface definition is also based on W3C. Namely W3C Widget Interface

(http://www.w3.org/TR/2011/WD-widgets-apis-20110607/). This specification

recaptures the W3C specification while adding webinos specific extensions.

http://dev.webinos.org/specifications/draft/servicediscovery.html
http://dev.webinos.org/specifications/draft/servicediscovery.html
http://dev.webinos.org/specifications/draft/tv.html
http://dev.webinos.org/specifications/draft/userprofile.html
http://dev.webinos.org/specifications/draft/userprofile.html
http://dev.webinos.org/specifications/draft/vehicle.html
http://dev.webinos.org/specifications/draft/vehicle.html
http://dev.webinos.org/specifications/draft/geolocation.html
http://dev.webinos.org/specifications/draft/deviceorientation.html
http://dev.webinos.org/specifications/draft/webinoscore.html
http://dev.webinos.org/specifications/draft/webinoscore.html
http://dev.webinos.org/specifications/draft/webinoscore.html
http://dev.webinos.org/specifications/draft/widget.html
http://dev.webinos.org/specifications/draft/widget.html

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 78 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

APIs: The attestation module

webinos API Specifications

30 Jun 2011

Authors

 Andrew Martin; <andrew.martin@cs.ox.ac.uk;>
John Lyle; <john.lyle@cs.ox.ac.uk>

© 2011 webinos consortium, www.webinos.org.

Abstract

Attestation: find the identity and integrity of running software

Summary of Methods

Interface Method

X509

TBSCertificate

Validity

namePair

AlgorithmIdentifier

SubjectPublicKeyInfo

attestationData

WebinosAttestationInterface

attestationData attestPlatform(byte [] nonce, SubjectPublicKeyInfo key)

SubjectPublicKeyInfo getAttestationKey()

X509 getKeyCredential(SubjectPublicKeyInfo key)

WebinosAttestation

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 79 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

1. Introduction

The attestation API provides a secure method of querying the underlying device hardware to find

out the identity and integrity of running software.

This API should allow applications to communicate with hardware security systems, such as a

Trusted Platform Module (defined in the Trusted Computing Group specifications).

However, the usual trusted computing specifications are generally aimed at a lower layer of the

operating system than webinos.

The aim of the attestation API is to expose existing low-level functionality to Web applications.

Requirement/architectural reference: ID-DEV-POLITO-005, ID-DEV-POLITO-006, ID-DEV-

POLITO-007, ID-DEV-POLITO-008

Example use of attestation, taken from the Security Architecture Documentation (D3.5):

1. User starts an application called "MyBankApp"

2. MyBankApp communicates with a remote webserver at http://bank.example.com

3. http://bank.example.com asks MyBankApp to attest to its current status

4. MyBankApp uses the Attestation API to request a public key and key credential for the local

device, Peter's Smartphone.

- App calls getAttestationKey() and getKeyCredential() to retrieve this information

5. The key credential is forwarded to http://bank.example.com

6. http://bank.example.com assesses the credential and checks to see whether the endpoint is a

trusted device.

- If not, attestation fails.

7. http://bank.example.com gives MyBankApp a fresh nonce, a 20 byte random value.

8. MyBankApp uses this nonce and the public key with the attestation API on Peter's

Smartphone:

- call attestPlatform(nonce, key)

9. Peter's Smartphone returns attestation data, which includes a log of the integrity of the

platform ("trustChain"), as well as validation data from the hardware trusted platform module

("validation data") with schema "TPM_Quote".

10. These values are passed on to http://bank.example.com

11. http://bank.example.com assesses the validation data and the integrity log using standard

TCG techniques see

http://www.trustedcomputinggroup.org/resources/tcg_architecture_overview_version_14 and

related documents

- If the platform integrity is not trusted, attestation fails

- If the validation data is not trusted, attestation fails

12. http://bank.example.com passes MyBankApp a temporary token which gives it access to the

http://bank.example.com banking capabilities

13. User authentication is requested via the authentication API

14. The application is now able to perform transactions using remote http://bank.example.com

APIs.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 80 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

2. Interfaces

2.1. X509

Definition of X509 certificate data structure taken from the ASN1 X509 Specifications and RFC

2459 http://www.ietf.org/rfc/rfc2459.txt

We expect for TCG attestation that the SKAE extension to also be introduced, definition:

http://www.trustedcomputinggroup.org/files/resource_files/876A7F79-1D09-3519-

AD321B21144AE93C/IWG_SKAE_Extension_1-00.pdf

however it is not defined here.

 interface X509 {

 readonly attribute TBSCertificate certificate;

 readonly attribute AlgorithmIdentifier signatureAlgorithm;

 readonly attribute byte[] signature;

 };

2.2. TBSCertificate

as defined in http://www.ietf.org/rfc/rfc2459.txt

 interface TBSCertificate {

 readonly attribute DOMString version;

 readonly attribute Integer serialNumber;

 readonly attribute AlgorithmIdentifier signature;

 readonly attribute namePairArray issuer;

 readonly attribute Validity validity;

 readonly attribute namePairArray subject;

 readonly attribute SubjectPublicKeyInfo subjectPublicKeyInfo;

 readonly attribute Any? extensions;

 };

2.3. Validity

as defined in http://www.ietf.org/rfc/rfc2459.txt

 interface Validity {

 readonly attribute Date notBefore;

 readonly attribute Date notAfter;

 };

2.4. namePair
A single pair of key and value.

 interface namePair {

 readonly attribute DOMString key;

 readonly attribute DOMString value;

 };

2.5. AlgorithmIdentifier

as defined in http://www.ietf.org/rfc/rfc2459.txt

 interface AlgorithmIdentifier {

 readonly attribute DOMString identifier;

 readonly attribute DOMString? parameters;

 };

2.6. SubjectPublicKeyInfo

as defined in http://www.ietf.org/rfc/rfc2459.txt

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 81 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 interface SubjectPublicKeyInfo {

 readonly attribute AlgorithmIdentifier algorithm;

 readonly attribute byte[] publickKey;

 };

2.7. attestationData

The data returned by an attestation request

 interface attestationData {

 readonly attribute byte[][] trustChain;

 readonly attribute byte[] validationData;

 readonly attribute DOMString schema;

 };

Attributes
readonly byte [] [] trustChain

List of binary data representing the identities of running

software. In the TCG scheme, this corresponds to the integrity

measurement log.

For example, in a TCG scheme you would expect the following contents:

0x00 -> [0x45ac76fec..., 0x956836fbc42...,]

0x01 -> [0x23c3414f1..., 0xbb3f4d282cf...,]

0x02 -> [0x72bb76045..., 0x04ccc997056...,]

...

0x0c -> [0x8a797441a..., 0xd642ac16d13...,]

This attribute is readonly.

readonly byte [] validationData

single binary blob, containing validation data for the trustChain

In the TCG scheme this would contain the following signed data, including:

- The TPM Quote version (1.1.0.0)

- A fixed byte[4] "QUOT"

- The SHA1 digest of the composite hash of the trustChain

- The 20 byte nonce

This attribute is readonly.

readonly DOMString schema

text string identifying the attestation scheme being used for example, "TPM_Quote"

This attribute is readonly.

2.8. WebinosAttestationInterface

interfaces for attesting the platform

 [NoInterfaceObject]

 interface WebinosAttestationInterface {

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 82 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 attestationData attestPlatform (in byte[] nonce, in SubjectPublicKeyInfo key)

 raises(AttestationException);

 SubjectPublicKeyInfo getAttestationKey () raises(AttestationException);

 X509 getKeyCredential (in SubjectPublicKeyInfo key) raises(AttestationException);

 };

Methods
attestPlatform

requests platform to provide attestation data

Signature

attestationData attestPlatform(in

 byte

 [] nonce, in SubjectPublicKeyInfo key);

inputs determine freshness and signing key to be used

return values are loose, to support arbitrary schemes of attestation

Note for implementation: there will need to be configuration of attestation modules to

support any authentication at the hardware layer.

Error conditions due to policy enforcement, as well as potentially from hardware failure.

Parameters

 nonce

o Optional: No.

o Nullable: No

o Type: array

o Description: is a 20 byte value used to guarantee freshness of the result

 key

o Optional: No.

o Nullable: No

o Type: SubjectPublicKeyInfo

o Description: is the (identifier of the) key which should be used for attestation.
This will have been retrieved from getAttestationKey().

Return value

data structure returned is described above.

Exceptions

 AttestationException:

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 83 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

getAttestationKey

returns public key corresponding to device identity used to authenticate sessions

Signature

SubjectPublicKeyInfo getAttestationKey();

in TCG terminology this would be the Attestation Identity Key (AIK)

Errors due to permission being denied or if the platform has not implemented attestation

due to hardware or software issues.

Return value

returns public key

Exceptions

 AttestationException:

getKeyCredential

return certificate for nominated key

Signature

X509 getKeyCredential(in SubjectPublicKeyInfo key);

If the key identifier is unknown, or the user policy does not allow access to it, an error

"not found" is returned.

Parameters

 key

o Optional: No.

o Nullable: No

o Type: SubjectPublicKeyInfo

o Description: is the RSA public key (or identifier) for which a certificate is to be
returned

Return value

returns certificate data structure corresponding to key

Exceptions

 AttestationException:

2.9. WebinosAttestation

The WebinosAttestation interface describes the part of the Attestation API accessible through the

webinos object.

 [NoInterfaceObject] interface WebinosAttestation {

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 84 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 readonly attribute WebinosAttestationInterface attestation;

 };

 webinoscore::Webinos implements WebinosAttestation;

Attributes
readonly WebinosAttestationInterface attestation

webinos.attestation object.

This attribute is readonly.

3. Type Definitions

3.1. namePairArray

as defined in http://www.ietf.org/rfc/rfc2459.txt

 typedef namePair[] namePairArray;

4. Exceptions

4.1. AttestationException

Exception handling for the attestation API

 exception AttestationException {

 const unsigned short UNKNOWN_ERROR = 0;

 const unsigned short INVALID_ARGUMENT_ERROR = 1;

 const unsigned short IO_ERROR = 4;

 const unsigned short NOT_SUPPORTED_ERROR = 5;

 const unsigned short PERMISSION_DENIED_ERROR = 20;

 const unsigned short KEY_NOT_FOUND_ERROR = 21;

 unsigned short code;

 DOMString message;

 };

Field
unsigned short code

An error code assigned by an implementation when an error has occurred in attestation

API processing.

DOMString message

5. Features

This is the list of URIs used to declare this API's features, for use in the widget config.xml and as

identifier for service type in service discovery functionality. For each URI, the list of functions

covered is provided.

http://webinos.org/api/attestation

6. Full WebIDL
module attestation {

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 85 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 interface X509 {

 readonly attribute TBSCertificate certificate;

 readonly attribute AlgorithmIdentifier signatureAlgorithm;

 readonly attribute byte[] signature;

 };

 interface TBSCertificate {

 readonly attribute DOMString version;

 readonly attribute Integer serialNumber;

 readonly attribute AlgorithmIdentifier signature;

 readonly attribute namePairArray issuer;

 readonly attribute Validity validity;

 readonly attribute namePairArray subject;

 readonly attribute SubjectPublicKeyInfo subjectPublicKeyInfo;

 readonly attribute Any? extensions;

 };

 interface Validity {

 readonly attribute Date notBefore;

 readonly attribute Date notAfter;

 };

 typedef namePair[] namePairArray;

 interface namePair {

 readonly attribute DOMString key;

 readonly attribute DOMString value;

 };

 interface AlgorithmIdentifier {

 readonly attribute DOMString identifier;

 readonly attribute DOMString? parameters;

 };

 interface SubjectPublicKeyInfo {

 readonly attribute AlgorithmIdentifier algorithm;

 readonly attribute byte[] publickKey;

 };

 exception AttestationException {

 const unsigned short UNKNOWN_ERROR = 0;

 const unsigned short INVALID_ARGUMENT_ERROR = 1;

 const unsigned short IO_ERROR = 4;

 const unsigned short NOT_SUPPORTED_ERROR = 5;

 const unsigned short PERMISSION_DENIED_ERROR = 20;

 const unsigned short KEY_NOT_FOUND_ERROR = 21;

 unsigned short code;

 DOMString message;

 };

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 86 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 interface attestationData {

 readonly attribute byte[][] trustChain;

 readonly attribute byte[] validationData;

 readonly attribute DOMString schema;

 };

 [NoInterfaceObject]

 interface WebinosAttestationInterface {

 attestationData attestPlatform (in byte[] nonce, in SubjectPublicKeyInfo key)

 raises(AttestationException);

 SubjectPublicKeyInfo getAttestationKey () raises(AttestationException);

 X509 getKeyCredential (in SubjectPublicKeyInfo key) raises(AttestationException);

 };

 [NoInterfaceObject] interface WebinosAttestation {

 readonly attribute WebinosAttestationInterface attestation;

 };

 webinoscore::Webinos implements WebinosAttestation;

};

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 87 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

APIs: The authentication module

Webinos API Specifications

30 Jun 2011

Authors

 John Lyle; <john.lyle@cs.ox.ac.uk>

© 2011 webinos consortium, www.webinos.org.

Abstract

Provides information to applications about the current authentication status of users, as well as

allowing applications to request re-authentication.

Summary of Methods

Interface Method

AuthStatus

AuthError

AuthSuccessCB void onSuccess(AuthStatus status)

AuthErrorCB void onError(AuthError error)

WebinosAuthenticationInterface

void authenticate(AuthSuccessCB successCB, AuthErrorCB errorCB)

boolean isAuthenticated()

AuthStatus getAuthenticationStatus()

WebinosAuthentication

1. Introduction

Authentication API for providing applications with information about whether the current user

has authenticated, and requesting re-authentication at runtime.

Requirement/architectural reference: PS-USR-Oxford-121

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 88 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

This API intentionally does not reveal identity information, but can give details about

authentication method, which may reveal device information.

2. Interfaces

2.1. AuthStatus

The object returned when user authentication status is queried. This contains information about

when and how authentication occurred.

 [NoInterfaceObject]

 interface AuthStatus {

 attribute DOMString? lastAuthTime;

 attribute DOMString? authMethod;

 attribute DOMString? authMethodDetails;

 };

Attributes
DOMString? lastAuthTime

The time of last authentication, as a valid date or time string.

No exceptions.

Code example

 {lastAuthTime: '2011-03-24T09:00-08:00'} // last authentication was on

March 24, 2011 @ 5pm (UTC)

DOMString? authMethod

An identifier for the type of authentication performed by the user.

Intended to be flexible for different devices. Examples include "PIN",

"Password", "Fingerprint". This is a high-level method name, no details.

DOMString? authMethodDetails

Further details as to the authentication method. This might include

the authentication device identifier, or the numberof digits in PINS, or any device-

specific value. Optional.

2.2. AuthError

Definition of error codes for authentication events

 [NoInterfaceObject]

 interface AuthError {

 const unsigned short UNKNOWN_ERROR = 0;

 const unsigned short INVALID_ARGUMENT_ERROR = 1;

 const unsigned short PERMISSION_DENIED_ERROR = 20;

 const unsigned short TIMEOUT_ERROR = 2;

 readonly attribute unsigned short code;

 };

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 89 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Constants

unsigned short UNKNOWN_ERROR

An unknown error occurred.

unsigned short INVALID_ARGUMENT_ERROR

An invalid parameter was provided when the requested method was invoked.

unsigned short PERMISSION_DENIED_ERROR

Access to the requested method was denied at the implementation or by the user.

unsigned short TIMEOUT_ERROR

Authentication timed out

Attributes
readonly unsigned short code

An error code assigned by an implementation when an error has occurred in

authentication API processing.

This attribute is readonly.

2.3. AuthSuccessCB

Success callback for authentication events.

 [Callback=FunctionOnly, NoInterfaceObject]

 interface AuthSuccessCB {

 void onSuccess(AuthStatus status);

 };

2.4. AuthErrorCB

Error callback for authentication events.

 [Callback=FunctionOnly, NoInterfaceObject]

 interface AuthErrorCB {

 void onError(AuthError error);

 };

2.5. WebinosAuthenticationInterface

The authentication interface provides three methods which allow applications to check the

current user authentication status and prompt for re-authentication.

 [NoInterfaceObject]

 interface WebinosAuthenticationInterface {

 void authenticate (in AuthSuccessCB successCB, in optional AuthErrorCB errorCB

);

 boolean isAuthenticated () raises(AuthenticationException);

 AuthStatus getAuthenticationStatus () raises(AuthenticationException);

 };

Methods
authenticate

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 90 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

this method instructs the runtime to request that the user authenticate themselves.

The method for authentication is not specified, it may be through any means provided by

the platform.

Signature

void authenticate(in AuthSuccessCB successCB, in optional AuthErrorCB

errorCB);

Errors can occur due to: a policy restricting access to this API, or an unknown error in the

device-specific authentication method.

This is an asynchronous method, although it may well be used (in practice)

synchronously.

Parameters

 successCB

o Optional: No.

o Nullable: No

o Type: AuthSuccessCB

o Description: contains the status of the user with regards to authentication,
including when
and how he or she was last authenticated. It does not include user identity.

 errorCB

o Optional: Yes.

o Nullable: No

o Type: AuthErrorCB

o Description: is a callback for when errors occur

Return value
isAuthenticated

Query the runtime to ask whether the user has recently been authenticated. How the

platform

determines this is not specified. It may return true if the user entered their PIN in the last

10

minutes, for example. It is expected that a platform preference based on current

authentication

status would be defined. These preferences are security-sensitive.

Signature

boolean isAuthenticated();

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 91 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Errors can occur due to: a policy restricting access to this API, or if the platform does not

have

a definitive answer due to a misconfigured preference or lack of information.

This is a synchronous method. Expected use would be to check at an important place

whether the user is authenticated and, if not, call "authenticate" to do so.

Return value

True IFF the user has been authenticated to the satisfaction of the platform.

Exceptions

 AuthenticationException:

getAuthenticationStatus

Query the runtime for precise details about the current state of the user with regard to

authentication.

Signature

AuthStatus getAuthenticationStatus();

Errors can occur due to: a policy restricting access to this API.

This is a synchronous method. Expected use is for when an application is determining

whether the user ought to re-authenticate, or whether the user is suitably authenticated for

a particular action. Future versions of this API may be able to insist that the user

authenticates in a certain way.

Return value

AuthStatus - returns the status of the user with regards to authentication, including when

and how he or she was last authenticated. It does not include user identity.

Exceptions

 AuthenticationException:

2.6. WebinosAuthentication

The WebinosAuthentication interface describes the part of the Authentication API accessible

through the webinos object.

 [NoInterfaceObject] interface WebinosAuthentication {

 readonly attribute WebinosAuthenticationInterface authentication;

 };

 webinoscore::Webinos implements WebinosAuthentication;

Attributes
readonly WebinosAuthenticationInterface authentication

webinos.authentication object.

This attribute is readonly.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 92 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

3. Exceptions

3.1. AuthenticationException

Exception codes for authentication events

 exception AuthenticationException{

 unsigned short code;

 DOMString message;

 const unsigned short UNKNOWN_ERROR = 0;

 const unsigned short INVALID_ARGUMENT_ERROR = 1;

 const unsigned short PERMISSION_DENIED_ERROR = 20;

 const unsigned short TIMEOUT_ERROR = 2;

 };

4. Features

This is the list of URIs used to declare this API's features, for use in the widget config.xml and as

identifier for service type in service discovery functionality. For each URI, the list of functions

covered is provided.

http://webinos.org/api/authentication

5. Full WebIDL
module authentication {

 [NoInterfaceObject]

 interface AuthStatus {

 attribute DOMString? lastAuthTime;

 attribute DOMString? authMethod;

 attribute DOMString? authMethodDetails;

 };

 [NoInterfaceObject]

 interface AuthError {

 const unsigned short UNKNOWN_ERROR = 0;

 const unsigned short INVALID_ARGUMENT_ERROR = 1;

 const unsigned short PERMISSION_DENIED_ERROR = 20;

 const unsigned short TIMEOUT_ERROR = 2;

 readonly attribute unsigned short code;

 };

 [Callback=FunctionOnly, NoInterfaceObject]

 interface AuthSuccessCB {

 void onSuccess(AuthStatus status);

 };

 [Callback=FunctionOnly, NoInterfaceObject]

 interface AuthErrorCB {

 void onError(AuthError error);

 };

 exception AuthenticationException{

 unsigned short code;

 DOMString message;

 const unsigned short UNKNOWN_ERROR = 0;

 const unsigned short INVALID_ARGUMENT_ERROR = 1;

 const unsigned short PERMISSION_DENIED_ERROR = 20;

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 93 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 const unsigned short TIMEOUT_ERROR = 2;

 };

 [NoInterfaceObject]

 interface WebinosAuthenticationInterface {

 void authenticate (in AuthSuccessCB successCB, in optional AuthErrorCB errorCB

);

 boolean isAuthenticated () raises(AuthenticationException);

 AuthStatus getAuthenticationStatus () raises(AuthenticationException);

 };

 [NoInterfaceObject] interface WebinosAuthentication {

 readonly attribute WebinosAuthenticationInterface authentication;

 };

 webinoscore::Webinos implements WebinosAuthentication;

};

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 94 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

APIs: The context module

Webinos API Specifications

1 Jul 2011

Authors

 Heiko Desruelle <heiko.desruelle@intec.ugent.be>

 Dieter Blomme <dieter.blomme@intec.ugent.be>

 George Gionis <gionis@epu.ntua.gr>

© 2011 webinos consortium, www.webinos.org.

Abstract

The Context API

Summary of Methods

Interface Method

ContextManagerHook

ContextManager

void executeQuery(QuerySuccessCallback successCallback,

QueryErrorCallback? errorCallback, Query query)

void subscribeContextEvent(SubscribeSuccessCallback

subscribeSuccessCallback, SubscribeErrorCallback? subscribeErrorCallback,

OccuringEvent eventHandler, DOMString eventIdentifier)

void unsubscribe(unsigned long subscriptionIdentifier)

Query

ContextError

QuerySuccessCallback void onsuccess(SPARQLquery queryResult)

QueryErrorCallback void onerror(ContextError error)

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 95 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Interface Method

SubscribeSuccessCallback void onsuccess(unsigned long subscriptionIdentifier)

SubscribeErrorCallback void onerror(ContextError error)

OccuringEvent void onContextEvent(DOMString eventContextData)

1. Introduction

The Context API defines the high-level interfaces required to obtain access to a user's context

data. The API supports two basic ways of accessing context data:

1. executing a query against the context data storage and retrieving context data through the

query results.

2. subscribing to receive real time context data updates as soon as a context related event

happens.

2. Interfaces

2.1. ContextManagerHook

Defines what is instantiated in initialization.

 [NoInterfaceObject] interface ContextManagerHook {

 readonly attribute ContextManager context;

 };

There will be a webinos.context object that allows accessing the * functionality of this module.

2.2. ContextManager

This is the entry point for the context API. The interface provides the two basic methods to

access the User's context data, i.e. query or subscribe to updates.

 [NoInterfaceObject] interface ContextManager {

 void executeQuery(in QuerySuccessCallback successCallback,

 in QueryErrorCallback? errorCallback,

 in Query query)

 raises(ContextError);

 void subscribeContextEvent(in SubscribeSuccessCallback subscribeSuccessCallback,

 in SubscribeErrorCallback? subscribeErrorCallback,

 in OccuringEvent eventHandler,

 in DOMString eventIdentifier)

 raises(ContextError);

 void unsubscribe(in unsigned long subscriptionIdentifier)

 raises(ContextError);

 };

 webinos implements ContextManager;

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 96 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Methods
executeQuery

Performs a context query against the context storage.

Signature

void executeQuery(in QuerySuccessCallback successCallback, in

QueryErrorCallback? errorCallback, in Query query);

When this method is invoked it executes the provided query against the context storage.

The context storage is a collection context objects, each one with specific attributes,

which hold context data that have been acquired over time by identifying a number of

context related events. The Query parameter that this method uses specifies what context

data (i.e. from which context objects) should be retrieved.

Mediation by policy and security: this method, as it provides application with data

(context) about the user, is expected to have privacy considerations. Therefore the system

is able to ignore the request of an app to receive context data if the User Privacy Policy

dictates so (i.e. the user has not authorized the app to access the context data it ask for in

the Query parameter).

Parameters

 successCallback

o Optional: No.

o Nullable: No

o Type: QuerySuccessCallback

o Description: Function to be invoked if the asynchronous query operation
completes successfully.

 errorCallback

o Optional: No.

o Nullable: Yes

o Type: QueryErrorCallback

o Description: Function to be invoked if the asynchronous query operation results
in errors.

 query

o Optional: No.

o Nullable: No

o Type: Query

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 97 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

o Description: The Query object describing the query to be executed against the
context storage.

Return value

void call

Exceptions

 ContextError:

with error code TYPE_MISMATCH_ERR if the input parameter is not

compatible with the expected type for that parameter.

subscribeContextEvent

Registers the function to be notifies when a context related event occurs.

Signature

void subscribeContextEvent(in SubscribeSuccessCallback

subscribeSuccessCallback, in SubscribeErrorCallback?

subscribeErrorCallback, in OccuringEvent eventHandler, in DOMString

eventIdentifier);

When this method is invoked, the implementation must register the (app) function that is

passed in the eventHandler argument as the hander function that will be notified when the

context related event, which in turn is identified in the eventIdentifier, happens. This

function will be invoked every time the indicated event occurs until the unsubscribe

method is invoked to cancel the subscription.

If the subscription is successfully created, an identifier for the handler is created and

returned in subscriptionSuccessCallback so that it is possible to cancel the subscription. If

the subscription cannot be created, the subscriptionErrorCallback contains an error code

that describes the reason for the error.

Mediation by policy and security: this method, as it can provide an application with real-

time data (context) about the user, is expected to have privacy considerations. Therefore

the system is able to ignore the request of an app to receive context data if the User

Privacy Policy dictates so (i.e. the user has not authorized the app to access the context

data of the dictated event).

Parameters

 subscribeSuccessCallback

o Optional: No.

o Nullable: No

o Type: SubscribeSuccessCallback

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 98 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

o Description: Function to be invoked if the asynchronous subscribe request
completes successfully.

 subscribeErrorCallback

o Optional: No.

o Nullable: Yes

o Type: SubscribeErrorCallback

o Description: Function to be invoked if the asynchronous subscribe request
results in errors.

 eventHandler

o Optional: No.

o Nullable: No

o Type: OccuringEvent

o Description: The function to be invoked when the dictated event occurs.

 eventIdentifier

o Optional: No.

o Nullable: No

o Type: DOMString

o Description: The event identifier, for example "UserProfileUpdate",
"ShoppingBasketCheckout".

Return value

void call

Exceptions

 ContextError:

with error code TYPE_MISMATCH_ERR if the input parameter is not

compatible with the expected type for that parameter.

unsubscribe

Cancels a subscription to a context related event.

Signature

void unsubscribe(in unsigned long subscriptionIdentifier);

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 99 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

If the subscriptionIdentifier argument is valid and corresponds to a subscription already

in place the subscription process MUST be effectivelly stoped. If the subscriptionHandler

argument does not correspond to a valid subscription, the method should return without

any further action.

Parameters

 subscriptionIdentifier

o Optional: No.

o Nullable: No

o Type: unsigned long

o Description: The identifier of the subscription, returned by
subscribeContextEvent().

Return value

void call

Exceptions

 ContextError:

with error code TYPE_MISMATCH_ERR if the input parameter is not

compatible with the expected type for that parameter.

2.3. Query

Query interface,

 [Callback, NoInterfaceObject] interface Query {

 attribute SPARQLquery xmlQuery;

 };

Attributes
SPARQLquery xmlQuery

query content in xml format

SPARQL query language for RDF

2.4. ContextError

Defines the error codes for this module

 [NoInterfaceObject] interface ContextError {

 const unsigned short SECURITY_ERR = 1;

 const unsigned short INVALID_QUERY_ERR = 2;

 const unsigned short TYPE_MISMATCH_ERR = 3;

 };

http://www.w3.org/TR/rdf-sparql-query/

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 100 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Constants

unsigned short SECURITY_ERR

Security Error

unsigned short INVALID_QUERY_ERR

invalid query

unsigned short TYPE_MISMATCH_ERR

invalid query

2.5. QuerySuccessCallback

Interface for callbacks indicating success of executeQuery() operation.

 [Callback=FunctionOnly, NoInterfaceObject] interface QuerySuccessCallback {

 void onsuccess (SPARQLquery queryResult);

 };

Methods
onsuccess

Callback on success of a executeQuery() operation

Signature

void onsuccess(SPARQLquery queryResult);

Parameters

 queryResult

o Optional: No.

o Nullable: No

o Type: SPARQLquery

o Description: Result of the query operation serialized as a json string, see
SPARQL query language for RDF.

Return value

void

2.6. QueryErrorCallback

Interface for callbacks indicating error of executeQuery() operation.

 [Callback=FunctionOnly, NoInterfaceObject] interface QueryErrorCallback {

 void onerror (ContextError error);

 };

Methods
onerror

http://www.w3.org/TR/rdf-sparql-query/

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 101 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Callback on failure of a executeQuery() operation

Signature

void onerror(ContextError error);

Parameters

 error

o Optional: No.

o Nullable: No

o Type: ContextError

o Description: The ContextError object capturing the type of the error.

Return value

void

2.7. SubscribeSuccessCallback

Interface for callbacks indicating success of subscribeContextEvent() operation.

 [Callback=FunctionOnly, NoInterfaceObject] interface SubscribeSuccessCallback {

 void onsuccess (unsigned long subscriptionIdentifier);

 };

Methods
onsuccess

Callback on success of a subscribeContextEvent() operation

Signature

void onsuccess(unsigned long subscriptionIdentifier);

Parameters

 subscriptionIdentifier

o Optional: No.

o Nullable: No

o Type: unsigned long

o Description: A subscription handler that can be later used to cancel the
subscription.

Return value

void

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 102 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

2.8. SubscribeErrorCallback

Interface for callbacks indicating error of subscribeContextEvent() operation.

 [Callback=FunctionOnly, NoInterfaceObject] interface SubscribeErrorCallback {

 void onerror (ContextError error);

 };

Methods
onerror

Callback on failure of a subscribeContextEvent() operation

Signature

void onerror(ContextError error);

Parameters

 error

o Optional: No.

o Nullable: No

o Type: ContextError

o Description: The ContextError object capturing the type of the error.

Return value

void

2.9. OccuringEvent

Interface for specifying the method called when a new context related event occurs.

 [Callback=FunctionOnly, NoInterfaceObject] interface OccuringEvent {

 void onContextEvent (DOMString eventContextData);

 };

This interface specifies a function that provides a serialized json string of the context data

retrieved from the happening of a context related event.

Methods
onContextEvent

Method invoked when the context related event occurs.

Signature

void onContextEvent(DOMString eventContextData);

Parameters

 eventContextData

o Optional: No.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 103 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

o Nullable: No

o Type: DOMString

o Description: The context data acquired by the event.

Return value

void

3. Features

When the feature

 http://webinos.org/api/context

or any of the features hierarchically under that feature is successfully requested, the interface

ContextManager is instantiated, and the resulting object appears in the global namespace as

.context.

This is the list of URIs used to declare this API's features, for use in the widget config.xml and as

identifier for service type in service discovery functionality. For each URI, the list of functions

covered is provided.

http://webinos.org/api/context

Acccess to all the module. This feature provides access to the whole API. Security and

Privacy enforcement may depend on the query or subscription requested by the

developer.

4. Full WebIDL
module context {

 [NoInterfaceObject] interface ContextManagerHook {

 readonly attribute ContextManager context;

 };

 webinos implements ContextManager;

 [NoInterfaceObject] interface ContextManager {

 void executeQuery(in QuerySuccessCallback successCallback,

 in QueryErrorCallback? errorCallback,

 in Query query)

 raises(ContextError);

 void subscribeContextEvent(in SubscribeSuccessCallback subscribeSuccessCallback,

 in SubscribeErrorCallback? subscribeErrorCallback,

 in OccuringEvent eventHandler,

 in DOMString eventIdentifier)

 raises(ContextError);

 void unsubscribe(in unsigned long subscriptionIdentifier)

 raises(ContextError);

 };

 [Callback, NoInterfaceObject] interface Query {

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 104 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 attribute SPARQLquery xmlQuery;

 };

 [NoInterfaceObject] interface ContextError {

 const unsigned short SECURITY_ERR = 1;

 const unsigned short INVALID_QUERY_ERR = 2;

 const unsigned short TYPE_MISMATCH_ERR = 3;

 };

 [Callback=FunctionOnly, NoInterfaceObject] interface QuerySuccessCallback {

 void onsuccess (SPARQLquery queryResult);

 };

 [Callback=FunctionOnly, NoInterfaceObject] interface QueryErrorCallback {

 void onerror (ContextError error);

 };

 [Callback=FunctionOnly, NoInterfaceObject] interface SubscribeSuccessCallback {

 void onsuccess (unsigned long subscriptionIdentifier);

 };

 [Callback=FunctionOnly, NoInterfaceObject] interface SubscribeErrorCallback {

 void onerror (ContextError error);

 };

 [Callback=FunctionOnly, NoInterfaceObject] interface OccuringEvent {

 void onContextEvent (DOMString eventContextData);

 };

};

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 105 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

APIs: The events module

Webinos API Specifications

30 Jun 2011

Authors

 Stefano D'Angelo <dangelo@ismb.it>

© 2011 webinos consortium, www.webinos.org.

Abstract

The Event Handling API

Summary of Methods

Interface Method

WebinosEventEntity

WebinosEventAddressing

WebinosEvent

void dispatchWebinosEvent(WebinosEventCallbacks? callbacks,

DOMTimeStamp? referenceTimeout, boolean sync)

void forwardWebinosEvent(WebinosEventAddressing forwarding, boolean

withTimeStamp, WebinosEventCallbacks? callbacks, DOMTimeStamp?

referenceTimeout, boolean sync)

WebinosEventDeliveryError

WebinosEventCallbacks

void onSending(WebinosEvent event, WebinosEventEntity recipient)

void onCaching(WebinosEvent event)

void onDelivery(WebinosEvent event, WebinosEventEntity recipient)

void onTimeout(WebinosEvent event, WebinosEventEntity recipient)

void onError(WebinosEvent event, WebinosEventEntity recipient,

WebinosEventDeliveryError error)

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 106 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Interface Method

WebinosEventListener void handleEvent(WebinosEvent event)

WebinosEventsInterface

WebinosEvent createWebinosEvent(DOMString type,

WebinosEventAddressing addressing, DOMString? payload, WebinosEvent?

inResponseTo, boolean withTimeStamp, DOMTimeStamp?

expiryTimeStamp, boolean addressingSensitive)

DOMString addWebinosEventListener(WebinosEventListener listener,

DOMString? type, WebinosEventEntity? source, WebinosEventEntity?

destination)

void removeWebinosEventListener(DOMString listenerId)

WebinosEvents

1. Introduction

The Webinos Event Handling API provides means to exchange data in terms of events among

addressable entities (e.g., applications, services), either locally or remotely.

This is an advanced API that is mostly meant to be used by third-party developers to implement

custom event-based protocols by taking advantage of the features offered by the Webinos event

handling system, that in turn leverages off of the features offered by Webinos overlay

networking model.

It is, therefore, strongly recommended to carefully read the Messaging section in the Webinos

system specifications before committing to the usage of this API.

Despite its apparent complexity, this API revolves around three simple basic concepts:

generating events, sending/forwarding events and registering/unregistering event listeners for

incoming events.

The following example demonstrates what the core functionality of a simplicistic textual chat

application could look like if implemented using this API.

Code example
// Array of objects implementing the WebinosEventEntity interface that

// represents the list of participants to the chat session, excluding the

// current application.

var participants = [...];

// DOM element that keeps a log of the whole session.

var logElem;

// DOM Text object that allows the user to insert text messages.

var inputElem;

// Function that somehow returns a human-readable name associated to the input

// entity.

function getName(entity) {

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 107 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 ...

}

// Function that returns a copy of the input string with HTML control characters

// ('<', '>', '&') escaped ('<', '>', '&').

function escapeHTML(str) {

 str = str.replace(/&/g, '&');

 return str.replace(/</g, '<').replace(/>/g, '>');

}

// Listener callback for incoming events.

function onMsg(evt) {

 // Appends event data to logElem.

 // E.g.: [00:00:00] Stefano said: Hi all!

 logElem.innerHTML += "[" + new Date(evt.timeStamp).toLocaleTimeString() + "] "

 + getName(evt.addressing.source) + " said: "

 + escapeHTML(evt.payload) + "\n";

}

// Delivery error notification callback.

function onMsgError(evt, recipient, error)

{

 // Pops up an alert dialog with error details.

 // E.g.: Stefano did not receive your message saying: "How are you?"

 // Event refused (4)

 alert(getName(recipient) + ' did not receive your message saying: "'

 + evt.payload + '"\n' + error.message + '(' + error.code + ')');

}

// Listener to DOM "click" event for some "Send Message" button.

function onSendButtonClicked() {

 // Creates a new event of type "chatMessage" directed to all the chat

 // participants with payload containing the text in inputElem and with

 // timestamp.

 var evt = webinos.events.createWebinosEvent("chatMessage", {to: participants},

 inputElem.value, null, true, null,

 true);

 // Sends the event and specifies the onMsgError callback for handling error

 // delivery notifications.

 evt.dispatchWebinosEvent({onError: onMsgError});

 // Appends the input message to logElem.

 // E.g.: [00:01:00] you said: "Let's try again... how are you?"

 logElem.innerHTML += "[" + new Date(evt.timeStamp).toLocaleTimeString()

 + "] you said: " + escapeHTML(evt.payload) + "\n";

}

// Initialization stuff.

document.onLoad = function() {

 // Gets "log" element.

 logElem = document.getElementById("log");

 // Gets "input" element.

 inputElem = document.getElementById("input");

 // Adds the onMsg() callback as an event listener for incoming events with

 // type "chatMessage", from any source and to any destination (within the

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 108 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 // application).

 webinos.events.addWebinosEventListener(onMsg, "chatMessage");

}

2. Interfaces

2.1. WebinosEventEntity

The WebinosEventEntity interface describes an addressable entity of any kind.

 [NoInterfaceObject] interface WebinosEventEntity {

 attribute DOMString id;

 };

Attributes
DOMString id

Globally unique identifier.

2.2. WebinosEventAddressing

The WebinosEventAddressing interface contains references to the sender and recipients of an

event.

 [NoInterfaceObject] interface WebinosEventAddressing {

 attribute WebinosEventEntity source;

 attribute WebinosEventEntity[] to;

 attribute WebinosEventEntity[] cc;

 attribute WebinosEventEntity[] bcc;

 };

This interfaces comes in two flavors: a strict normalized form for events generated and/or

processed by the Webinos runtime, and a more lax non-normalized form to ease API usage.

Please, keep in mind that the Webinos runtime always operates on normalized equivalents of

user-supplied objects implementing this interface in non-normalized form, hence it creates those

equivalents by applying the normalization process described in the documentation of the

createWebinosEvent() function of the WebinosEventsInterface interface.

Details on both forms are given in each attribute's description.

Attributes
WebinosEventEntity source

Event source.

In the normalized form it SHALL always be set.

The non-normalized form allows to use null or undefined to indicate the current

application.

WebinosEventEntity [] to

Array of primary recipients.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 109 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

It MUST always contain at least one element.

In the normalized form it SHALL be sorted in ascending order by Unicode code points

and SHALL NOT contain duplicate entries.

WebinosEventEntity [] cc

Array of secondary recipients.

It MAY be empty.

In the normalized form it SHALL be sorted in ascending order by Unicode code points,

SHALL NOT contain duplicate entries and SHALL NOT contain entries that are also

found in the "to" array.

The non-normalized form allows to use null or undefined to indicate no secondary

recipients.

WebinosEventEntity [] bcc

Array of blind-carbon-copy recipients.

It MAY be empty.

In the normalized form it SHALL be sorted in ascending order by Unicode code points,

SHALL NOT contain duplicate entries and SHALL NOT contain entries that are also

found in the "to" or "cc" arrays.

The non-normalized form allows to use null or undefined to indicate no blind-carbon-

copy recipients.

2.3. WebinosEvent

The WebinosEvent interface describes an incoming or outgoing event.

 [NoInterfaceObject] interface WebinosEvent {

 readonly attribute DOMString type;

 readonly attribute WebinosEventAddressing addressing;

 readonly attribute DOMString id;

 readonly attribute WebinosEvent inResponseTo;

 readonly attribute DOMTimeStamp? timeStamp;

 readonly attribute DOMTimeStamp? expiryTimeStamp;

 readonly attribute boolean addressingSensitive;

 readonly attribute WebinosEventAddressing forwarding;

 readonly attribute DOMTimeStamp? forwardingTimeStamp;

 readonly attribute DOMString? payload;

 void dispatchWebinosEvent(

 in optional WebinosEventCallbacks? callbacks,

 in optional DOMTimeStamp? referenceTimeout,

 in optional boolean sync)

 raises(WebinosEventException);

 void forwardWebinosEvent(

 in WebinosEventAddressing forwarding,

 in optional boolean withTimeStamp,

 in optional WebinosEventCallbacks? callbacks,

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 110 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 in optional DOMTimeStamp? referenceTimeout,

 in optional boolean sync)

 raises(WebinosEventException);

 };

Attributes
readonly DOMString type

Event type identifier.

It MUST match the following regular expression: [_a-zA-Z][_a-zA-Z0-9]*

Identifiers "deliveryNotification", "JSONRPC20Request" and "JSONRPC20Response"

are reserved, hence not allowed.

This attribute is readonly.

readonly WebinosEventAddressing addressing

References to the original sender and recipients in normalized form.

This attribute is readonly.

readonly DOMString id

Event identifier.

It is calculated by hashing a partial serialization of the WebinosEvent object that

involves:

- the event type;

- the original event source and primary recipients, in case the "addressingSensitive"

attribute is true;

- the identifier of the event that this event is a response to, if any;

- the event timestamp, if present;

- the event expiry timestamp, if present;

- the payload, if present.

Even though not strictly required, conforming implementations are recommended to

implement some strategy to try to limit the likelihood that an application instance is

delivered more than one event with a given id. Users of this API MUST assume that no

more than one event with a given id is ever delivered to a given recipient.

For more details, please refer to the Webinos system specifications.

This attribute is readonly.

readonly WebinosEvent inResponseTo

Event that this event is a response to.

If null, this event was not sent in response to another event.

This attribute is readonly.

readonly DOMTimeStamp? timeStamp

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 111 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Moment in time in which the event is generated by the original event source.

It MAY be null.

This attribute is readonly.

readonly DOMTimeStamp? expiryTimeStamp

Moment in time past which the event is no more valid or meaningful.

It MAY be null.

This attribute is readonly.

readonly boolean addressingSensitive

Indicates whether the original addressing information is part of the informative content of

the event.

In practice, when this is set to true, the identifiers of the orignal event source and primary

recipients are used to compute the event id.

This attribute is readonly.

readonly WebinosEventAddressing forwarding

References to the entity that forwarded the event and the recipients of such forwarding.

It is null if the event was not subject to any forwarding, hence it comes straight from the

original sending entity.

This attribute is readonly.

readonly DOMTimeStamp? forwardingTimeStamp

Moment in time in which the event was forwarded by the forwarding source.

It SHALL be null if "forwarding" is null and MAY be null also if "forwarding" is not

null.

This attribute is readonly.

readonly DOMString? payload

Event type-specific data.

It MAY be null.

This attribute is readonly.

Methods
dispatchWebinosEvent

Sends an event.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 112 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Signature

void dispatchWebinosEvent(in optional WebinosEventCallbacks? callbacks,

in optional DOMTimeStamp? referenceTimeout, in optional boolean sync);

W.r.t. the "Delivery notification wanted" attribute described in the Webinos system

specification, its value in the implementation is to be deferred from the callbacks

parameter and allowed to change between dispatchWebinosEvent() and

forwardWebinosEvent() calls. It SHALL be true when delivery and/or error callbacks are

passed via the callbacks argument, false otherwise.

NOTE: Please, keep in mind that all recipients SHALL get references to all entities

specified in the "to" and "cc" attributes.

Parameters

 callbacks

o Optional: Yes.

o Nullable: Yes

o Type: WebinosEventCallbacks

o Description: Set of callbacks to monitor sending status (null and undefined are
considered as equivalent to a WebinosEventCallbacks object with all attributes
set to null).

 referenceTimeout

o Optional: Yes.

o Nullable: Yes

o Type: DOMTimeStamp

o Description: Moment in time until which the Webinos runtime SHALL ensure
that the WebinosEvent object being sent is not garbage collected for the
purpose of receiving events in response to the event being sent (null, undefined
and values up to the current date/time mean that no special action is taken by
the runtime in this regard).

 sync

o Optional: Yes.

o Nullable: No

o Type: boolean

o Description: If false or undefined, the function is non-blocking, otherwise if true
it will block until one of the following conditions becomes true:
- if referenceTimeout represents a moment in time in the future at call time,
that moment is reached;
- otherwise, if the "expiryTimeStamp" attribute is specified as a moment in time

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 113 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

in the future at call time, that moment is reached;
- in any case, the end result of the operation is completely determined for all
recipients and all callbacks that were to be called have run.

Exceptions

 WebinosEventException:

INVALID_ARGUMENT_ERROR if any of the supplied arguments is not valid.

PERMISSION_DENIED_ERROR if some local policy rule does not allow for the

event to be sent.

forwardWebinosEvent

Forwards an event.

Signature

void forwardWebinosEvent(in WebinosEventAddressing forwarding, in

optional boolean withTimeStamp, in optional WebinosEventCallbacks?

callbacks, in optional DOMTimeStamp? referenceTimeout, in optional

boolean sync);

W.r.t. the "Delivery notification wanted" attribute described in the Webinos system

specification, its value in the implementation is to be deferred from the callbacks

parameter and allowed to change between dispatchWebinosEvent() and

forwardWebinosEvent() calls. It SHALL be true when delivery and/or error callbacks are

passed via the callbacks argument, false otherwise.

Conforming implementations SHALL NOT modify the "Forwarding" attribute of the

local WebinosEvent object when this function is called.

NOTE: Please, keep in mind that all recipients referenced by the forwarding argument

SHALL get references to all entities specified in the "to", "cc" and "bcc" arrays of the

"addressing" attribute, as well as references to all entities specified in the "to" and "cc"

arrays of the forwarding argument.

Parameters

 forwarding

o Optional: No.

o Nullable: No

o Type: WebinosEventAddressing

o Description: References to the entity on the behalf of which the application
wants to forward the event and to the recipients of such forwarding. This
argument SHALL be processed in the same way as the
webinos.events.createWebinosEvent() function processes its "addressing"
argument (i.e., make a normalized copy).

 withTimeStamp

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 114 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

o Optional: Yes.

o Nullable: No

o Type: boolean

o Description: Whether to set the forwarding timestamp (undefined is considered
as equivalent to false).

 callbacks

o Optional: Yes.

o Nullable: Yes

o Type: WebinosEventCallbacks

o Description: Set of callbacks to monitor forwarding status (null and undefined
are considered as equivalent to an WebinosEventCallbacks object with all
attributes set to null).

 referenceTimeout

o Optional: Yes.

o Nullable: Yes

o Type: DOMTimeStamp

o Description: Moment in time until which the Webinos runtime SHALL ensure
that the WebinosEvent object being forwarded is not garbage collected for the
purpose of receiving events in response to the event being forwarded (null,
undefined and values up to the current date/time mean that no special action is
taken by the runtime in this regard).

 sync

o Optional: Yes.

o Nullable: No

o Type: boolean

o Description: If false or undefined, the function is non-blocking, otherwise if true
it will block until one of the following conditions becomes true:
- if referenceTimeout represents a moment in time in the future at call time,
that moment is reached;
- otherwise, if the "expiryTimeStamp" attribute is specified as a moment in time
in the future at call time, that moment is reached;
- in any case, the end result of the operation is completely determined for all
recipients and all callbacks that were to be called have run.

Exceptions

 WebinosEventException:

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 115 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

INVALID_ARGUMENT_ERROR if any of the supplied arguments is not valid.

PERMISSION_DENIED_ERROR if some local policy rule does not allow for the

event to be forwarded.

2.4. WebinosEventDeliveryError

The WebinosEventDeliveryError interface describes event delivery errors reported using the

delivery notification protocol.

 [NoInterfaceObject] interface WebinosEventDeliveryError {

 readonly attribute unsigned short code;

 readonly attribute DOMString message;

 const unsigned short UNKNOWN_ERR = 0;

 const unsigned short INVALID = 1;

 const unsigned short BAD_DESTINATION = 2;

 const unsigned short EXPIRED = 3;

 const unsigned short REFUSED = 4;

 const unsigned short NO_REFERENCE = 5;

 };

Constants

unsigned short UNKNOWN_ERR

Unknown error.

unsigned short INVALID

The recipient got an invalid event (e.g., transmission error).

unsigned short BAD_DESTINATION

The intended recipient is unknown or unreachable.

unsigned short EXPIRED

The event expired before the actual delivery, according to its "expiryTimestamp"

attribute.

unsigned short REFUSED

The event could not be received because of lack of authorization and/or policy settings.

unsigned short NO_REFERENCE

The recipient does not hold a local reference to the event specified by the

"inResponseTo" attribute.

Attributes
readonly unsigned short code

Error code.

This attribute is readonly.

readonly DOMString message

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 116 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Error description.

This attribute is readonly.

2.5. WebinosEventCallbacks

The WebinosEventCallbacks interface allows to pass a set of status monitoring callbacks to

event sending/forwarding methods.

 [Callback, NoInterfaceObject] interface WebinosEventCallbacks {

 void onSending(in WebinosEvent event,

 in WebinosEventEntity recipient);

 void onCaching(in WebinosEvent event);

 void onDelivery(in WebinosEvent event,

 in WebinosEventEntity recipient);

 void onTimeout(in WebinosEvent event,

 in WebinosEventEntity recipient);

 void onError(in WebinosEvent event,

 in WebinosEventEntity recipient,

 in WebinosEventDeliveryError error);

 };

TODO: does this definition allow to use null/undefined? Otherwise should define callback types

and use nullable attributes.

Methods
onSending

Called right after the event has been successfully transmitted to the "next hop".

Signature

void onSending(in WebinosEvent event, in WebinosEventEntity recipient);

This callback SHALL NOT be called more than once per recipient for each send/forward.

Parameters

 event

o Optional: No.

o Nullable: No

o Type: WebinosEvent

o Description: The event being transmitted.

 recipient

o Optional: No.

o Nullable: No

o Type: WebinosEventEntity

o Description: The recipient to which the event is being transmitted.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 117 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

onCaching

Called right after the event has been put into the Local Event Cache for later transmission

(e.g., when trying to send it to a remote entity but no connectivity is currently available).

Signature

void onCaching(in WebinosEvent event);

Parameters

 event

o Optional: No.

o Nullable: No

o Type: WebinosEvent

o Description: The event being cached.

onDelivery

Called as soon as successful event delivery has been reported by a given recipient or if

the recipient notifies that it did already receive an event with the same ID.

Signature

void onDelivery(in WebinosEvent event, in WebinosEventEntity

recipient);

This callback SHALL NOT be called more than once per recipient for each send/forward.

Conforming implementations SHALL set the "Delivery notification wanted" attribute

described in the Webinos system specifications as true whenever this callback is

specified.

Parameters

 event

o Optional: No.

o Nullable: No

o Type: WebinosEvent

o Description: The event that was successfully delivered.

 recipient

o Optional: No.

o Nullable: No

o Type: WebinosEventEntity

o Description: The recipient that notified delivery success.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 118 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

onTimeout

Called right after the moment in time specified by the "referenceTimeout" attribute is

reached and the given primary recipient did not successfully sent back at least one event

in response to the given event.

Signature

void onTimeout(in WebinosEvent event, in WebinosEventEntity recipient);

This callback SHALL only be called if the "referenceTimeout" attribute indicates a

moment in time in the future at sending/forwarding time and SHALL NOT be called

more than once per recipient for each send/forward.

Parameters

 event

o Optional: No.

o Nullable: No

o Type: WebinosEvent

o Description: The event.

 recipient

o Optional: No.

o Nullable: No

o Type: WebinosEventEntity

o Description: The recipient that did not successfully sent back at least one event
in response to the given event.

onError

Called as soon as unsuccessful event delivery has been reported w.r.t. a given recipient.

Signature

void onError(in WebinosEvent event, in WebinosEventEntity recipient, in

WebinosEventDeliveryError error);

This callback SHALL be called when the recipient reports unsuccessful delivery or when

it was not possible to send the message and the event expired.

This callback SHALL NOT be called more than once per recipient for each send/forward.

Conforming implementations SHALL set the "Delivery notification wanted" attribute

described in the Webinos system specifications as true whenever this callback is

specified.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 119 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Parameters

 event

o Optional: No.

o Nullable: No

o Type: WebinosEvent

o Description: The event that was not successfully delivered.

 recipient

o Optional: No.

o Nullable: No

o Type: WebinosEventEntity

o Description: The recipient that notified delivery error.

 error

o Optional: No.

o Nullable: No

o Type: WebinosEventDeliveryError

o Description: The reported error.

2.6. WebinosEventListener

The WebinosEventListener interface describes an event listener callback.

 [Callback=FunctionOnly] interface WebinosEventListener {

 void handleEvent(in WebinosEvent event);

 };

Methods
handleEvent

Called when a new event is received.

Signature

void handleEvent(in WebinosEvent event);

Parameters

 event

o Optional: No.

o Nullable: No

o Type: WebinosEvent

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 120 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

o Description: The event.

2.7. WebinosEventsInterface

The WebinosEventsInterface interface describes the part of the Event Handling API accessible

through the webinos.events object.

 [NoInterfaceObject] interface WebinosEventsInterface {

 WebinosEvent createWebinosEvent(

 in DOMString type,

 in WebinosEventAddressing addressing,

 [TreatUndefinedAs=Null]

 in optional DOMString? payload,

 in optional WebinosEvent? inResponseTo,

 in optional boolean withTimeStamp,

 in optional DOMTimeStamp? expiryTimeStamp,

 in optional boolean addressingSensitive)

 raises(WebinosEventException);

 DOMString addWebinosEventListener(

 in WebinosEventListener listener,

 [TreatUndefinedAs=Null]

 in optional DOMString? type,

 in optional WebinosEventEntity? source,

 in optional WebinosEventEntity? destination)

 raises(WebinosEventException);

 void removeWebinosEventListener(in DOMString listenerId)

 raises(WebinosEventException);

 };

Methods
createWebinosEvent

Creates a new event.

Signature

WebinosEvent createWebinosEvent(in DOMString type, in

WebinosEventAddressing addressing, in optional DOMString? payload, in

optional WebinosEvent? inResponseTo, in optional boolean withTimeStamp,

in optional DOMTimeStamp? expiryTimeStamp, in optional boolean

addressingSensitive);

The function SHALL accept the "addressing" argument both in normalized and non-

normalized form and, in either case, the resulting "addressing" attribute in the newly

created WebinosEvent object SHALL reference a newly created and normalized

equivalent of such argument where:

- entries that are found both in "to" and "cc" in the original argument are removed from

the "cc" array of the resulting WebinosEventAddressing object;

- entries that are found both in "to" and "bcc" in the original argument are removed from

the "bcc" array of the resulting WebinosEventAddressing object;

- entries that are found both in "cc" and "bcc" in the original argument are removed from

the "bcc" array of the resulting WebinosEventAddressing object.

Furthermore, the function SHALL also make sure that it is valid for the application to

create the event on the behalf of the specified source, otherwise an

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 121 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

WebinosEventException exception with error code INVALID_ARGUMENT_ERROR

SHALL be thrown.

Parameters

 type

o Optional: No.

o Nullable: No

o Type: DOMString

o Description: Event type identifier.

 addressing

o Optional: No.

o Nullable: No

o Type: WebinosEventAddressing

o Description: References to the sending entity on the behalf of which the
application wants to create the event and to the event recipients.

 payload

o Optional: Yes.

o Nullable: Yes

o Type: DOMString

o Description: Event type-specific data or null (undefined is considered as
equivalent to null).

 inResponseTo

o Optional: Yes.

o Nullable: Yes

o Type: WebinosEvent

o Description: Event that this event is a response to (undefined is considered as
equivalent to null).

 withTimeStamp

o Optional: Yes.

o Nullable: No

o Type: boolean

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 122 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

o Description: Whether to set the generation timestamp (undefined is considered
as equivalent to false).

 expiryTimeStamp

o Optional: Yes.

o Nullable: Yes

o Type: DOMTimeStamp

o Description: Moment in time past which the event is no more valid or
meaningful (undefined is considered as equivalent to null).

 addressingSensitive

o Optional: Yes.

o Nullable: No

o Type: boolean

o Description: Whether the addressing information is part of the informative
content of the event (undefined is considered as equivalent to false).

Return value

Newly created WebinosEvent object or null if an error occurred.

Exceptions

 WebinosEventException:

INVALID_ARGUMENT_ERROR if any of the supplied arguments is not valid.

addWebinosEventListener

Registers an event listener.

Signature

DOMString addWebinosEventListener(in WebinosEventListener listener, in

optional DOMString? type, in optional WebinosEventEntity? source, in

optional WebinosEventEntity? destination);

The arguments to this function act as filters, in the sense that when a new event is

received, the listener is called if the event's attributes match with all arguments passed to

this function.

When a new event is received, all listeners that were registered via this function with

matching arguments SHALL be called, yet the order of such calls is unspecified.

Registering a listener SHALL NOT have consequences on other listeners, hence it

SHALL be possible to register multiple listeners to the same event

type/source/destination combinations.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 123 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Parameters

 listener

o Optional: No.

o Nullable: No

o Type: WebinosEventListener

o Description: The event listener.

 type

o Optional: Yes.

o Nullable: Yes

o Type: DOMString

o Description: Specific event type or null for any type (undefined is considered as
null).

 source

o Optional: Yes.

o Nullable: Yes

o Type: WebinosEventEntity

o Description: Specific event source or null for any source (undefined is
considered as null).

 destination

o Optional: Yes.

o Nullable: Yes

o Type: WebinosEventEntity

o Description: Specific event recipient (whether primary or not) or null for any
destination (undefined is considered as null).

Return value

Listener identifier.

Exceptions

 WebinosEventException:

INVALID_ARGUMENT_ERROR if any of the supplied arguments is not valid.

removeWebinosEventListener

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 124 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Unregisters an event listener.

Signature

void removeWebinosEventListener(in DOMString listenerId);

Unregistering a listener SHALL NOT have consequences on other listeners.

Parameters

 listenerId

o Optional: No.

o Nullable: No

o Type: DOMString

o Description: Listener identifier as returned by addWebinosEventListener().

Exceptions

 WebinosEventException:

INVALID_ARGUMENT_ERROR if any of the supplied arguments is not valid.

2.8. WebinosEvents

The WebinosEvents interface describes the part of the Event Handling API accessible through

the webinos object.

 [NoInterfaceObject] interface WebinosEvents {

 readonly attribute WebinosEventsInterface events;

 };

 webinoscore::Webinos implements WebinosEvents;

Attributes
readonly WebinosEventsInterface events

webinos.events object.

This attribute is readonly.

3. Exceptions

3.1. WebinosEventException

Error codes for the events module.

 exception WebinosEventException {

 unsigned short code;

 DOMString message;

 const unsigned short INVALID_ARGUMENT_ERROR = 1;

 const unsigned short PERMISSION_DENIED_ERROR = 2;

 };

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 125 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Field
unsigned short code

Error code.

DOMString message

Error description.

4. Features

This is the list of URIs used to declare this API's features, for use in the widget config.xml and as

identifier for service type in service discovery functionality. For each URI, the list of functions

covered is provided.

http://webinos.org/api/events

5. Full WebIDL
module events {

 [NoInterfaceObject] interface WebinosEventEntity {

 attribute DOMString id;

 };

 [NoInterfaceObject] interface WebinosEventAddressing {

 attribute WebinosEventEntity source;

 attribute WebinosEventEntity[] to;

 attribute WebinosEventEntity[] cc;

 attribute WebinosEventEntity[] bcc;

 };

 [NoInterfaceObject] interface WebinosEvent {

 readonly attribute DOMString type;

 readonly attribute WebinosEventAddressing addressing;

 readonly attribute DOMString id;

 readonly attribute WebinosEvent inResponseTo;

 readonly attribute DOMTimeStamp? timeStamp;

 readonly attribute DOMTimeStamp? expiryTimeStamp;

 readonly attribute boolean addressingSensitive;

 readonly attribute WebinosEventAddressing forwarding;

 readonly attribute DOMTimeStamp? forwardingTimeStamp;

 readonly attribute DOMString? payload;

 void dispatchWebinosEvent(

 in optional WebinosEventCallbacks? callbacks,

 in optional DOMTimeStamp? referenceTimeout,

 in optional boolean sync)

 raises(WebinosEventException);

 void forwardWebinosEvent(

 in WebinosEventAddressing forwarding,

 in optional boolean withTimeStamp,

 in optional WebinosEventCallbacks? callbacks,

 in optional DOMTimeStamp? referenceTimeout,

 in optional boolean sync)

 raises(WebinosEventException);

 };

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 126 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 exception WebinosEventException {

 unsigned short code;

 DOMString message;

 const unsigned short INVALID_ARGUMENT_ERROR = 1;

 const unsigned short PERMISSION_DENIED_ERROR = 2;

 };

 [NoInterfaceObject] interface WebinosEventDeliveryError {

 readonly attribute unsigned short code;

 readonly attribute DOMString message;

 const unsigned short UNKNOWN_ERR = 0;

 const unsigned short INVALID = 1;

 const unsigned short BAD_DESTINATION = 2;

 const unsigned short EXPIRED = 3;

 const unsigned short REFUSED = 4;

 const unsigned short NO_REFERENCE = 5;

 };

 [Callback, NoInterfaceObject] interface WebinosEventCallbacks {

 void onSending(in WebinosEvent event,

 in WebinosEventEntity recipient);

 void onCaching(in WebinosEvent event);

 void onDelivery(in WebinosEvent event,

 in WebinosEventEntity recipient);

 void onTimeout(in WebinosEvent event,

 in WebinosEventEntity recipient);

 void onError(in WebinosEvent event,

 in WebinosEventEntity recipient,

 in WebinosEventDeliveryError error);

 };

 [Callback=FunctionOnly] interface WebinosEventListener {

 void handleEvent(in WebinosEvent event);

 };

 [NoInterfaceObject] interface WebinosEventsInterface {

 WebinosEvent createWebinosEvent(

 in DOMString type,

 in WebinosEventAddressing addressing,

 [TreatUndefinedAs=Null]

 in optional DOMString? payload,

 in optional WebinosEvent? inResponseTo,

 in optional boolean withTimeStamp,

 in optional DOMTimeStamp? expiryTimeStamp,

 in optional boolean addressingSensitive)

 raises(WebinosEventException);

 DOMString addWebinosEventListener(

 in WebinosEventListener listener,

 [TreatUndefinedAs=Null]

 in optional DOMString? type,

 in optional WebinosEventEntity? source,

 in optional WebinosEventEntity? destination)

 raises(WebinosEventException);

 void removeWebinosEventListener(in DOMString listenerId)

 raises(WebinosEventException);

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 127 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 };

 [NoInterfaceObject] interface WebinosEvents {

 readonly attribute WebinosEventsInterface events;

 };

 webinoscore::Webinos implements WebinosEvents;

};

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 128 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

APIs: The AppLauncher module

Webinos API Specifications

29 Jun 2011

Authors

 Michael Vakulenko <michael@visionmobile.com>

© 2011 webinos consortium, www.webinos.org.

Abstract

The application execution API (AppLauncher) allows activation of webinos applications

installed locally on the device. Functionality defined in this version of the specification refers to

webinos Phase 1 scope.

Summary of Methods

Interface Method

AppLauncherManager

PendingOperation launchApplication(SuccessCallback successCallback,

ErrorCallback errorCallback, applicationID appID, ObjectArray params)

boolean AppInstalled(applicationID appID)

SuccessCallback void onSuccess()

ErrorCallback void onError(LaucherAPIError error)

LauncherAPIError

PendingOperation void cancel()

WebinosLauncher

1. Introduction

The application execution API allows activation of webinos applications installed locally on the

device. The API is modelled after BONDI v1.1 AppLauncher API.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 129 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Operation of the API is guided by application execution policies, which can be modified by user.

The policies control the following aspects of API operation:

- Enable/disable of activation of native applications

- Enable/disable of activation of webinos installable applications

- Enable/disable of notifications to users when a webinos application attempts to activate another

application

- Enable/disable of application ability to discover installed applications

- Enable/disable of logging of operations performed using the API

The application execution API provides mechanisms for webinos applications to check if

specific webinos application is installed in the device.

2. Interfaces

2.1. AppLauncherManager

NOTE:

- applicationID type will be defined in webinoscore module. Each application will have a unique

ID coming from its manifest file. applicationID is a string composed of ID from the app

certificate and identifiers assigned by the maker of the app. For the purposes of phase 1

AppLauncher API, we can assume the ID is a string that will be known to the application that

starts another application and is known to the runtime based on manifests of installed apps.

 [NoInterfaceObject] interface AppLauncherManager {

 PendingOperation launchApplication(in SuccessCallback successCallback,

 in ErrorCallback errorCallback,

 in applicationID appID,

 in optional ObjectArray params)

 raises(AppLauncherException);

 boolean AppInstalled(in applicationID appID)

 raises(AppLauncherException);

 };

This is the main interface for the AppLauncher API.

Code example
 // Define the launchApplication success callback.

 function launchedCallback(response) {

 alert("Webinos application launched successfully");

 }

 // Define the error callback

 function errorCallback(response) {

 alert("The following error: " + response.code + ",

occurred");

 }

 // Activate webinos application, if the application is installed in the

device.

 var appinstalled = webinos.AppLauncher.AppInstalled(appID);

 if (appinstalled) {

 webinos.AppLauncher.launchApplication(launchedCallback, errorCallback,

appID, null);

 }

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 130 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Methods
launchApplication

Starts a webinos applicaiton identified by appID. The method is asynchronous. If the app

was started successfuly, successCallback is invoked. In case of error, errorCallback is

called.

Signature

PendingOperation launchApplication(in SuccessCallback successCallback,

in ErrorCallback errorCallback, in applicationID appID, in optional

ObjectArray params);

Parameters

 successCallback

o Optional: No.

o Nullable: No

o Type: SuccessCallback

o Description: Callback invoked when a requested webinos app was activated
successfully.

 errorCallback

o Optional: No.

o Nullable: No

o Type: ErrorCallback

o Description: Callback invoked if activation of webinos app was not successful.

 appID

o Optional: No.

o Nullable: No

o Type: applicationID

o Description: Identifies webinos application that needs to be activated.

 params

o Optional: Yes.

o Nullable: No

o Type: ObjectArray

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 131 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

o Description: Optional set of parameters for starting the application.

Return value

A pending operation object

Exceptions

 AppLauncherException:

Thrown when activation of the application was not successful.

AppInstalled

Reports if a specific webinos application is installed in the device. The method is

synchronous.

Signature

boolean AppInstalled(in applicationID appID);

Parameters

 appID

o Optional: No.

o Nullable: No

o Type: applicationID

o Description: Identifies webinos application presence of which needs to be
tested.

Return value

True if the application is installed, false if the application is not installed.

Exceptions

 AppLauncherException:

Thrown when activation of the application was not successful.

2.2. SuccessCallback

This interface defines the callback for a asynchronous launchApplication method.

 [Callback=FunctionOnly, NoInterfaceObject]

 interface SuccessCallback{

 void onSuccess();

 };

Methods
onSuccess

This method is called if function app was launched successfully.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 132 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Signature

void onSuccess();

2.3. ErrorCallback

This interface defines the callback for a failed activation of asynchronous launchApplication

method.

 [Callback=FunctionOnly, NoInterfaceObject]

 interface ErrorCallback{

 void onError(in LaucherAPIError error);

 };

Methods
onError

This method is called if asychronous launchApplication method fails.

Signature

void onError(in LaucherAPIError error);

Parameters

 error

o Optional: No.

o Nullable: No

o Type: LaucherAPIError

o Description: contains information about the error

2.4. LauncherAPIError

API-specific error handling interface

 [NoInterfaceObject] interface LauncherAPIError {

 readonly attribute unsigned short code;

 readonly attribute DOMString message;

 const unsigned short UNKNOWN_ERR = 0;

 const unsigned short NOT_SUPPORTED_ERR = 9;

 const unsigned short TYPE_MISMATCH_ERR = 17;

 const unsigned short SECURITY_ERR = 18;

 const unsigned short NETWORK_ERR = 19;

 const unsigned short INVALID_APP_ID = 100;

 const unsigned short APP_NOT_FOUND = 101;

 const unsigned short NO_RESOURCES = 102;

 const unsigned short ALREADY_STARTED = 103;

 const unsigned short POLICY_NOT_ALLOWED = 104;

 };

The LaucnherAPIError interface describes error interface for the Launcher API.

2.5. PendingOperation

The PendingOperation interface

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 133 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 [NoInterfaceObject] interface PendingOperation {

 void cancel ();

 };

The PendingOperation interface describes operation of cancellable aynchronous methods.

Cancellable asynchronous methods return PendingOperation objects exporting methods for

cancelling the operation.

Methods
cancel

Cancel method for cancelling asynchronous operation

Signature

void cancel();

Cancel ongoing asynchronous method call. Upon calling this method the runtime must

immediately stop the pending operation and return.

2.6. WebinosLauncher

The WebinosLauncher interface describes the part of the App Execution API accessible through

the webinos object.

 [NoInterfaceObject] interface WebinosLauncher {

 readonly attribute AppLauncherManager launcher;

 };

 webinoscore::Webinos implements WebinosLauncher;

Attributes
readonly AppLauncherManager launcher

webinos.launcher object.

This attribute is readonly.

3. Type Definitions

3.1. ObjectArray

Array of DOMStrings.

 typedef sequence<object> ObjectArray;

3.2. applicationID

Application ID for identifying installed webinos applications. NOTE: This definition could be

moved to webinos core module in the future.

 typedef DOMString applicationID;

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 134 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

4. Exceptions

4.1. AppLauncherException

Exception definition for AppLauncher module. Error codes are defined in LauncherAPIError

interface.

 exception AppLauncherException {

 unsigned short code;

 DOMString message;

 };

5. Features

This is the list of URIs used to declare this API's features, for use in the widget config.xml and as

identifier for service type in service discovery functionality. For each URI, the list of functions

covered is provided.

http://webinos.org/api/applauncher.launch

Start webinos application - allows to invoke webinos application identified by a unique

identifier.

http://webinos.org/api/applauncher.check

Check if application is installed - allow to test of an application identified by a specific

application ID is installed on the device.

6. Full WebIDL
module AppLauncher {

 typedef sequence<object> ObjectArray;

 typedef DOMString applicationID;

 exception AppLauncherException {

 unsigned short code;

 DOMString message;

 };

 [NoInterfaceObject] interface AppLauncherManager {

 PendingOperation launchApplication(in SuccessCallback successCallback,

 in ErrorCallback errorCallback,

 in applicationID appID,

 in optional ObjectArray params)

 raises(AppLauncherException);

 boolean AppInstalled(in applicationID appID)

 raises(AppLauncherException);

 };

 [Callback=FunctionOnly, NoInterfaceObject]

 interface SuccessCallback{

 void onSuccess();

 };

 [Callback=FunctionOnly, NoInterfaceObject]

 interface ErrorCallback{

 void onError(in LaucherAPIError error);

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 135 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 };

 [NoInterfaceObject] interface LauncherAPIError {

 readonly attribute unsigned short code;

 readonly attribute DOMString message;

 const unsigned short UNKNOWN_ERR = 0;

 const unsigned short NOT_SUPPORTED_ERR = 9;

 const unsigned short TYPE_MISMATCH_ERR = 17;

 const unsigned short SECURITY_ERR = 18;

 const unsigned short NETWORK_ERR = 19;

 const unsigned short INVALID_APP_ID = 100;

 const unsigned short APP_NOT_FOUND = 101;

 const unsigned short NO_RESOURCES = 102;

 const unsigned short ALREADY_STARTED = 103;

 const unsigned short POLICY_NOT_ALLOWED = 104;

 };

 [NoInterfaceObject] interface PendingOperation {

 void cancel ();

 };

 [NoInterfaceObject] interface WebinosLauncher {

 readonly attribute AppLauncherManager launcher;

 };

 webinoscore::Webinos implements WebinosLauncher;

};

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 136 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

APIs: The messaging module

Webinos API Specifications

28 Jun 2011

Authors

 WAC 2.0 Proposed Release Version (PRV) 28 January 2011

 Extended with InstantMessaging functionality for webinos by Christian Fuhrhop
<christian.fuhrhop@fokus.fraunhofer.de>

© 2011 webinos consortium, www.webinos.org.

Abstract

WAC based Messaging interface.

Summary of Methods

Interface Method

DeviceapisMessaging

Messaging

Message createMessage(short type)

PendingOperation sendMessage(SuccessCallback successCallback,

ErrorCallback errorCallback, Message message)

PendingOperation sendMessage(MessageSendCallback

successCallback, ErrorCallback errorCallback, Message message)

PendingOperation findMessages(FindMessagesSuccessCallback

successCallback, ErrorCallback errorCallback, MessageFilter filter)

unsigned long onSMS(OnIncomingMessage messageHandler)

unsigned long onMMS(OnIncomingMessage messageHandler)

unsigned long onEmail(OnIncomingMessage messageHandler)

unsigned long onIM(OnIncomingMessage messageHandler)

void unsubscribe(unsigned long subscriptionHandler)

Message
PendingOperation update(UpdateMessageSuccessCallback

successCallback, ErrorCallback errorCallback)

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 137 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Interface Method

MessageFilter

MessageAttachment

FindMessagesSuccessCallback void onsuccess(MessageArray messages)

UpdateMessageSuccessCallback void onsuccess(Message message)

OnIncomingMessage void onevent(Message message)

MessageSendCallback

void onsuccess()

void onmessagesendsuccess(DOMString recipient)

void onmessagesenderror(DeviceAPIError error, DOMString recipient)

PendingOperation void cancel()

1. Introduction

The messaging API provides access to the following capabilities: Sending messages through

different technologies: SMS, MMS, Email and Instant Messages. Search for messages in the

different folders. Subscribe for being notified upon incoming message events.

This API is a read only API that does not allow message or folder management.

2. Interfaces

2.1. DeviceapisMessaging

Defines what is instantiated in the deviceapis object

 [NoInterfaceObject] interface DeviceapisMessaging {

 readonly attribute Messaging messaging;

 };

 Deviceapis implements DeviceapisMessaging;

When the messaging feature is instantiated, the messaging object is available in the deviceapis

object.

2.2. Messaging

Messaging creation, sending and reading capabilities

 [NoInterfaceObject] interface Messaging {

 const short TYPE_SMS = 1;

 const short TYPE_MMS = 2;

 const short TYPE_EMAIL = 3;

 const short TYPE_IM = 3;

 const unsigned short FOLDER_INBOX = 1;

 const unsigned short FOLDER_OUTBOX = 2;

 const unsigned short FOLDER_DRAFTS = 3;

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 138 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 const unsigned short FOLDER_SENTBOX = 4;

 Message createMessage(in short type)

 raises(DeviceAPIError);

 PendingOperation sendMessage(in SuccessCallbackSuccessCallbackSuccessCallback

successCallback,

 in ErrorCallbackErrorCallbackErrorCallback

errorCallback,

 in Message message)

 raises(DeviceAPIError);

 PendingOperation sendMessage(in MessageSendCallback successCallback,

 in ErrorCallbackErrorCallbackErrorCallback

errorCallback,

 in Message message)

 raises(DeviceAPIError);

 PendingOperation findMessages(in FindMessagesSuccessCallback successCallback,

 in optional ErrorCallbackErrorCallbackErrorCallback

errorCallback,

 in optional MessageFilter filter)

 raises(DeviceAPIError);

 unsigned long onSMS(in OnIncomingMessage messageHandler)

 raises(DeviceAPIError);

 unsigned long onMMS(in OnIncomingMessage messageHandler)

 raises(DeviceAPIError);

 unsigned long onEmail(in OnIncomingMessage messageHandler)

 raises(DeviceAPIError);

 unsigned long onIM(in OnIncomingMessage messageHandler)

 raises(DeviceAPIError);

 void unsubscribe(in unsigned long subscriptionHandler)

 raises(DeviceAPIError);

 };

This interface allows a Web application to create a message through the createMessage() method

that returns an instance of the Message interface. That message could be manipulated through the

functionality offered by the Message interface and sent afterwards through the sendMessage()

method.

Messages created through this API are not persistent in device memory until the implementation

tries to send them through the send operation. When that operation has been performed, the

message will be available on the relevant folder depending on the result of the operation (e.g.

sent, drafts...). The only way to access the messages that have been sent is through the use of the

findMessages method. The findMessages method allows developers to retrieve the content of the

messages available in the device folders.

This interface also offers mechanism to subscribe for being notified upon incoming message

events.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 139 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Code example
 // Define the success callback

 function messageSent() {

 alert("The SMS has been sent");

 }

 // Define the error callback

 function messageFailed(error) {

 alert("The SMS could not be sent " + error.message);

 }

 // SMS sending example

 var msg = deviceapis.messaging.createMessage(deviceapis.messaging.TYPE_SMS);

 msg.body = "I will arrive in 10 minutes";

 msg.to = ["+34666666666"];

 // Send request

 deviceapis.messaging.sendMessage(messageSent, messageFailed, msg);

Constants

short TYPE_SMS

Identifier for messages of type SMS.

short TYPE_MMS

Identifier for messages of type MMS.

short TYPE_EMAIL

Identifier for messages of type Email.

short TYPE_IM

Identifier for messages of type IM.

unsigned short FOLDER_INBOX

Identifier for the message inbox.

unsigned short FOLDER_OUTBOX

Identifier for the message outbox.

unsigned short FOLDER_DRAFTS

Identifier for the message draft folder.

unsigned short FOLDER_SENTBOX

Identifier for message sent-items folder.

Methods
createMessage

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 140 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Create a message of a given type.

Signature

Message createMessage(in short type);

Parameters

 type

o Optional: No.

o Nullable: No

o Type: short

o Description: The type of message that is created. The possible values are:
TYPE_SMS, TYPE_MMS, TYPE_EMAIL and TYPE_IM.

Return value

A Message object of the given type or null if there is any problem during the message creation.

Exceptions

 DeviceAPIError:

TYPE_MISMATCH_ERR if the input parameter is not compatible with the

expected type for that parameter.

INVALID_VALUES_ERR if the input parameter contains an invalid value.

Code example
 var msg = deviceapis.messaging.createMessage(deviceapis.messaging.TYPE_SMS);

 msg.body = "webinos first SMS message.";

sendMessage

Attempt to send the specified message.

Signature

PendingOperation sendMessage(in SuccessCallback successCallback, in

ErrorCallback errorCallback, in Message message);

If the message type is set to email and the user has multiple email accounts set up, the

runtime SHOULD use the default e-mail account. If no account has been set up, the

runtime MAY either provide respective mechanisms to create a new one or throw the

given ErrorCallback back to the requesting widget.

Only the parameters supported by a specific technology and that can be set up by the

developer (see Message interface attribute definition) are sent as specified in the

following table (the rest are ignored):

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 141 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Attribute SMS MMS Email IM

to Yes Yes Yes Yes

body Yes Yes Yes Yes

subject No Yes Yes No

attachments No Yes Yes No

cc No No Yes Yes

bcc No No Yes Yes

priority No No Yes No

When a message has been successfully or unsuccessfully sent, it will be stored in the

relevant folder (e.g. sent folder if successfully sent). Please not that some platforms may

store multiple copies of the message if multiple recipients were included.

When the operation is fully completed (i.e. the implementation knows the result of the

send operation to all the recipients), the onsuccess method of the successCallback will be

invoked if the message is successfully sent to all the recipients.

If any of the input parameters is not compatible with the expected type for that parameter

a DeviceAPIError with code TYPE_MISMATCH_ERR MUST be synchronously

thrown.

If the operation fails for any other reason, the errorCallback will be invoked with an

appropriate error code amongst the following:

INVALID_VALUES_ERR: If any of the input paramters contains an invalid value. E.g.

successCallback or message is null, message contains invalid values in any of its

attributes... Please note that in order to allow developer ignore errors errorCallback

accepts null as a valid value.

NOT_SUPPORTED_ERR: If the specified messaging technology is not supported.

SECURITY_ERR: If the operation is not allowed.

UNKNOWN_ERR: In any other error case.

If the errorCallback does not contain a valid function (e.g. null), in case of any error that

should be returned in the errorCallback (see above), the implementation MUST silently

fail and no further action is required (i.e. the error is not notified to the developer).

Parameters

 successCallback

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 142 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

o Optional: No.

o Nullable: No

o Type: SuccessCallbackSuccessCallbackSuccessCallback

o Description: To be invoked if the message is successfully sent.

 errorCallback

o Optional: No.

o Nullable: No

o Type: ErrorCallbackErrorCallbackErrorCallback

o Description: To be invoked in case the sending request fails.

 message

o Optional: No.

o Nullable: No

o Type: Message

o Description: The message to be sent.

Return value

PendingOperation to cancel the asynchronous call

Exceptions

 DeviceAPIError:

TYPE_MISMATCH_ERR if any input parameter is not compatible with the

expected type for that parameter.

Code example
 // Define the success callback

 function messageSent() {

 alert("The SMS has been sent to all the recipients");

 }

 // Define the error callback

 function messageFailed(error) {

 alert("The SMS could not be sent " + error.message);

 }

 // SMS sending example

 var msg = deviceapis.messaging.createMessage(deviceapis.messaging.TYPE_SMS);

 msg.body = "I will arrive in 10 minutes";

 msg.to = ["+34666666666", "+34888888888"];

 // Send request

 deviceapis.messaging.sendMessage(messageSent, messageFailed, msg);

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 143 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

sendMessage

Attempt to send the specified message with per-recipient notification

Signature

PendingOperation sendMessage(in MessageSendCallback successCallback, in

ErrorCallback errorCallback, in Message message);

If the message type is set to email and the user has multiple email accounts set up, the

runtime SHOULD use the default e-mail account. If no account has been set up, the

runtime MAY either provide respective mechanisms to create a new one or throw the

given ErrorCallback back to the requesting widget.

Only the parameters supported by a specific technology and that can be set up by the

developer (see Message interface attribute definition) are sent as specified in the

following table (the rest are ignored):

Attribute SMS MMS Email IM

to Yes Yes Yes Yes

body Yes Yes Yes Yes

subject No Yes Yes No

attachments No Yes Yes No

cc No No Yes Yes

bcc No No Yes Yes

priority No No Yes No

When a message has been successfully or unsuccessfully sent, it will be stored in the

relevant folder (e.g. sent folder if successfully sent). Please not that some platforms may

store multiple copies of the message if multiple recipients were included.

For every individual recipient in the destination list, when the message is successfully

sent to it the method onmessagesendsuccess of the successCallback argument MUST be

invoked. If the message cannot be sent to that recipient, the onmessagesenderror of the

successCallback argument MUST be invoked with the recipient and the error code as

input parameters. The following error codes may be passed depending on the the error

conditions:

INVALID_VALUES_ERR: If any of the input paramters contains an invalid value. E.g.

successCallback or message is null, message contains invalid values in any of its

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 144 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

attributes... Please note that in order to allow developer ignore errors errorCallback

accepts null as a valid value.

NOT_SUPPORTED_ERR: If the specified messaging technology is not supported.

SECURITY_ERR: If the operation is not allowed.

UNKNOWN_ERR: In any other error case.

When the operation is fully completed (i.e. the implementation knows the result of the

send operation to all the recipients), the onsuccess method of the successCallback will be

invoked if the message is successfully sent to all the recipients.

In case of any error different to a TYPE_MISMATCH_ERR, the errorCallback will be

invoked with an appropriate error code amongst the following:

INVALID_VALUES_ERR: If any of the input paramters contains an invalid value. E.g.

successCallback or message is null, message contains invalid values in any of its

attributes... Please note that in order to allow developer ignore errors errorCallback

accepts null as a valid value.

NOT_SUPPORTED_ERR: If the specified messaging technology is not supported.

SECURITY_ERR: If the operation is not allowed.

UNKNOWN_ERR: In any other error case.

If the errorCallback does not contain a valid function (e.g. null), in case of any error that

should be returned in the errorCallback (see above), the implementation MUST silently

fail and no further action is required (i.e. the error is not notified to the developer).

Parameters

 successCallback

o Optional: No.

o Nullable: No

o Type: MessageSendCallback

o Description: Contains the methods for individual notifications.

 errorCallback

o Optional: No.

o Nullable: No

o Type: ErrorCallbackErrorCallbackErrorCallback

o Description: To be invoked in case the sending request fails.

 message

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 145 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

o Optional: No.

o Nullable: No

o Type: Message

o Description: The message to be sent.

Return value

PendingOperation to cancel the asynchronous call

Exceptions

 DeviceAPIError:

TYPE_MISMATCH_ERR if any input parameter is not compatible with the

expected type for that parameter.

Code example
 // Define the send callback

 var messageSendCallback = {

 onsuccess: function() {

 alert("The SMS has been sent to all the recipients");},

 onmessagesendsuccess: function(recipient) {

 alert("The SMS has been sent to " + recipient);},

 onmessagesenderror: function(error, recipient) {

 alert("The SMS has not been sent to " + recipient +

 " error " + error);}

 };

 // Define the error callback

 function messageFailed(error) {

 alert("The SMS could not be sent " + error.message);

 }

 // SMS sending example

 var msg = deviceapis.messaging.createMessage(deviceapis.messaging.TYPE_SMS);

 msg.body = "I will arrive in 10 minutes";

 msg.to = ["+34666666666", "+34888888888"];

 // Send request

 deviceapis.messaging.sendMessage(messageSendCallback, messageFailed, msg);

findMessages

Gets an array of messages from the message folders matching the selected filter.

Signature

PendingOperation findMessages(in FindMessagesSuccessCallback

successCallback, in optional ErrorCallback errorCallback, in optional

MessageFilter filter);

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 146 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

If any of the input parameters is not compatible with the expected type for that parameter

a DeviceAPIError with code TYPE_MISMATCH_ERR MUST be synchronously

thrown.

If the this feature is not supported, a DeviceAPIError with code

NOT_SUPPORTED_ERR MUST be returned in the errorCallback. If this functionality is

not allowed the errorCallback MUST be invoked with a DeviceAPIError with code

SECURITY_ERR.

If the successCallback does not contain a Function (i.e. it is null), a DeviceAPIError with

code INVALID_VALUES_ERR MUST be returned.

If the filter is passed and contains valid values, only those values in the message lists that

matches the filter criteria as specified in the MessageFilter interface will be returned in

the successCallback. If no filter is passed, it is null or undefined, or contains any invalid

value, the implementation MUST return the full list of messages in the successCallback.

If no messages are available in the lists or no one matches the filter criteria, the

successCallback will be invoked with an empty array.

If any other error occurs, while trying to retrieve the messages, the errorCallback function

that was passed in the invocation MUST be called including a DeviceAPIError object

with code UNKNOWN_ERR.

In any of the cases in which the errorCallback should be invoked, if the developer has not

passed an ErrorCallback or it is null, no action is required (i.e. the error is not notified to

the developer).

Parameters

 successCallback

o Optional: No.

o Nullable: No

o Type: FindMessagesSuccessCallback

o Description: function called when the invocation ends successfully.

 errorCallback

o Optional: Yes.

o Nullable: No

o Type: ErrorCallbackErrorCallbackErrorCallback

o Description: function called when an error occurs

 filter

o Optional: Yes.

o Nullable: No

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 147 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

o Type: MessageFilter

o Description: message data to be used when filtering

Return value

PendingOperation to cancel the asynchronous call

Exceptions

 DeviceAPIError:

TYPE_MISMATCH_ERR if any input parameter is not compatible with the

expected type for that parameter.

Code example
 var msg = { type:[deviceapis.messaging.TYPE_SMS], body:"first messa%" };

 deviceapis.messaging.findMessages(

 function (messages) {

 alert(messages.length + " message(s) found!");

 for (var i=0; imessages.length; i++) {

 alert(i + ". message from " + messages[i].from);

 }

 },

 null,

 msg);

onSMS

Registers the function to be notified on incoming new SMSs

Signature

unsigned long onSMS(in OnIncomingMessage messageHandler);

When this method is invoked, the implementation MUST register the function passed in

the messageHandler argument as the handler for being notified whenever an incoming

SMS arrives to the device. That function will be invoked every time an incoming SMS

arrives, unless the unsubscribe method with the handler identifier is invoked in order to

cancel the subscription.

If the subscription is successfully created, an identifier for the handler is created and

returned so that it is possible to cancel the subscription. If the subscription cannot be

created, a DeviceAPIError is synchronously thrown with an error code that describes the

reason for the error.If any of the input parameters is not compatible with the expected

type for that parameter a DeviceAPIError with code TYPE_MISMATCH_ERR MUST

be synchronously thrown.

Parameters

 messageHandler

o Optional: No.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 148 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

o Nullable: No

o Type: OnIncomingMessage

o Description: The function to be invoked on incoming SMSs

Return value

Subscription identifier

Exceptions

 DeviceAPIError:

TYPE_MISMATCH_ERR if any input parameter is not compatible with the

expected type for that parameter.

INVALID_VALUES_ERR if the messageHandler is null or undefined.

NOT_SUPPORTED_ERR if this feature is not supported.

SECURITY_ERR if this operation is not allowed.

Code example
 // function to receive new SMS notifications

 function incomingSMS(message)

 {

 alert("New incoming SMS from " + message.from);

 // The subscription is cancelled to prevent further notifications

 if (mySMSListener != null)

 deviceapis.messaging.unsubscribe(mySMSListener);

 }

onMMS

Registers the function to be notified on incoming new MMSs

Signature

unsigned long onMMS(in OnIncomingMessage messageHandler);

When this method is invoked, the implementation MUST register the function passed in

the messageHandler argument as the handler for being notified whenever an incoming

MMS arrives to the device. That function will be invoked every time an incoming MMS

arrives, unless the unsubscribe method with the handler identifier is invoked in order to

cancel the subscription.

If the subscription is successfully created, an identifier for the handler is created and

returned so that it is possible to cancel the subscription. If the subscription cannot be

created, a DeviceAPIError is synchronously thrown with an error code that describes the

reason for the error.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 149 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Parameters

 messageHandler

o Optional: No.

o Nullable: No

o Type: OnIncomingMessage

o Description: The function to be invoked on incoming MMSs

Return value

Subscription identifier

Exceptions

 DeviceAPIError:

TYPE_MISMATCH_ERR if any input parameter is not compatible with the

expected type for that parameter.

INVALID_VALUES_ERR if the messageHandler is null or undefined.

NOT_SUPPORTED_ERR if this feature is not supported.

SECURITY_ERR if this operation is not allowed.

Code example
 // function to receive new MMS notifications

 function incomingMMS(message)

 {

 alert("New incoming MMS from " + message.from);

 // The subscription is cancelled to prevent further notifications

 if (myMMSListener != null)

 deviceapis.messaging.unsubscribe(myMMSListener);

 }

onEmail

Registers the function to be notified on incoming new Email

Signature

unsigned long onEmail(in OnIncomingMessage messageHandler);

When this method is invoked, the implementation MUST register the function passed in

the messageHandler argument as the handler for being notified whenever an incoming

Email arrives to the device. That function will be invoked every time an incoming Email

arrives, unless the unsubscribe method with the handler identifier is invoked in order to

cancel the subscription.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 150 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

If the subscription is successfully created, an identifier for the handler is created and

returned so that it is possible to cancel the subscription. If the subscription cannot be

created, a DeviceAPIError is synchronously thrown with an error code that describes the

reason for the error.

Parameters

 messageHandler

o Optional: No.

o Nullable: No

o Type: OnIncomingMessage

o Description: he function to be invoked on incoming emails

Return value

Subscription identifier

Exceptions

 DeviceAPIError:

TYPE_MISMATCH_ERR if any input parameter is not compatible with the

expected type for that parameter.

INVALID_VALUES_ERR if the messageHandler is null or undefined.

NOT_SUPPORTED_ERR if this feature is not supported.

SECURITY_ERR if this operation is not allowed.

Code example
 // function to receive new Email notifications

 function incomingEmail(message)

 {

 alert("New incoming Email from " + message.from);

 // The subscription is cancelled to prevent further notifications

 if (myEmailListener != null)

 deviceapis.messaging.unsubscribe(myEmailListener);

 }

 // Register listener for new Email events

 var myEmailListener = null;

 myEmailListener = deviceapis.messaging.onEmail(incomingEmail);

onIM

Registers the function to be notified on incoming new Instant Message

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 151 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Signature

unsigned long onIM(in OnIncomingMessage messageHandler);

When this method is invoked, the implementation MUST register the function passed in

the messageHandler argument as the handler for being notified whenever an incoming

instant message arrives to the device. That function will be invoked every time an

incoming Instant Message arrives, unless the unsubscribe method with the handler

identifier is invoked in order to cancel the subscription.

If the subscription is successfully created, an identifier for the handler is created and

returned so that it is possible to cancel the subscription. If the subscription cannot be

created, a DeviceAPIError is synchronously thrown with an error code that describes the

reason for the error.

Parameters

 messageHandler

o Optional: No.

o Nullable: No

o Type: OnIncomingMessage

o Description: he function to be invoked on incoming instant message

Return value

Subscription identifier

Exceptions

 DeviceAPIError:

TYPE_MISMATCH_ERR if any input parameter is not compatible with the

expected type for that parameter.

INVALID_VALUES_ERR if the messageHandler is null or undefined.

NOT_SUPPORTED_ERR if this feature is not supported.

SECURITY_ERR if this operation is not allowed.

Code example
 // function to receive new Instant Messaging notifications

 function incomingIM(message)

 {

 alert("New incoming Instant Message from " + message.from);

 // The subscription is cancelled to prevent further notifications

 if (myIMListener != null)

 deviceapis.messaging.unsubscribe(myIMistener);

 }

 // Register listener for new Instant Messaging events

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 152 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 var myIMistener = null;

 myIMistener = deviceapis.messaging.onIM(incomingIM);

unsubscribe

Cancels a messaging subscription

Signature

void unsubscribe(in unsigned long subscriptionHandler);

If the subscriptionHandler argument is valid and corresponds to a subscription already in

place the subscription process MUST immediately stop and no further message

notifications MUST be invoked. If the subscriptionHandler argument does not

correspond to a valid subscription, the method should return without any further action.

Parameters

 subscriptionHandler

o Optional: No.

o Nullable: No

o Type: unsigned long

o Description: identifier of the subscription returned by the onSMS(), onMMS(),
onEmail() or onIM() methods.

Return value

void

Exceptions

 DeviceAPIError:

TYPE_MISMATCH_ERR if any input parameter is not compatible with the

expected type for that parameter.

2.3. Message

Defines the content and attributes of a message

 [NoInterfaceObject] interface Message {

 readonly attribute DOMString id;

 attribute short type;

 attribute short folder;

 readonly attribute Date timestamp;

 readonly attribute DOMString from;

 attribute StringArray to;

 attribute StringArray cc;

 attribute StringArray bcc;

 attribute DOMString body;

 attribute boolean isRead;

 attribute boolean priority;

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 153 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 attribute DOMString subject;

 attribute FileArray attachments;

 PendingOperation update(in UpdateMessageSuccessCallback successCallback,

 in optional ErrorCallbackErrorCallbackErrorCallback

errorCallback)

 raises(DeviceAPIError);

 };

This interface allows a Web application to define the set of properties linked to a message

previously created through the createMessage() method in the Messaging Interface.

Additionally, it also allows an application to retrieve the content of a message through the

findMessages, onSMS, onMMS and onEmail methods. In those cases, the implementation MAY

return in some situations only part of the body because of its size. In those situations the

implementation MUST allow the developer to retrieve the remaining part of the message through

the use of the sync method member of the Synchronisable interface implemented by Message.

Additionally, for the same reason, the implementation MAY decide to provide only the

attachment information but not the attachment content. This is achieved by returning in the

attachments attribute not a sequence of Files but a sequence of MessageAttachments (that

implement the Synchronisable interface).

If the developer attempts to access an attribute not supported by the messaging technology (see

attribute description or summary table in the sendMessage mehtod description), the

implementation MUST ignore this attempt.

Code example
 var msg = deviceapis.messaging.createMessage(deviceapis.messaging.TYPE_SMS);

 msg.body = "WAC first SMS message.";

 msg.to = ["+34666666666"];

Attributes
readonly DOMString id

Message unique identifier.

A unique indicator for identifying a message.

This property is a locally unique and persistent id, assigned by the device or the Web

runtime environment. For new messages created using Messaging.createMessage(), the id

is assigned on the first occasion that the message is processed by the underlying platform

such as a call to send(). This property is unique across device power cycles.

This attribute is readonly.

short type

The type of the given message.

short folder

The folder for the given message.

For messages created through the createMessage method this property is undefined.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 154 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

readonly Date timestamp

The timestamp of a message.

This property is set up by the device or the web runtime environment.

This attribute is readonly.

readonly DOMString from

The source address of a message.

This property is set up by the device or the web runtime environment. This property

should only be taken into account for Email.

This attribute is readonly.

StringArray to

The destination of a message.

StringArray cc

The Cc address of a message.

StringArray bcc

The Bcc address of a message.

DOMString body

The body of a message.

boolean isRead

The flag "read" for this Message.

True if the message has been read and false otherwise.

boolean priority

The priority of a message.

True means high priority and false normal or low priority. This property should only be

taken into account for Email.

DOMString subject

The subject of a message.

This property should only be taken into account for MMS and Email.

FileArray attachments

The list of message attachments.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 155 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

This property should only be taken into account for Email and MMS. If the message has

not been created by the developer but returned through the findMessage, onMMS or

onEmail methods, the attachments will be stored in the "attachments" file system root

location, that is only accessible through this API.

Methods
update

Updates a message retrieved with the findMessages method

Signature

PendingOperation update(in UpdateMessageSuccessCallback

successCallback, in optional ErrorCallback errorCallback);

This method is meant to transfer all changes made to the given Message object before

(i.e. changed attributes) to the underlying system (e.g. native messaging database and

LDAP). If any changes cannot be transferred to the system, they can be ignored by the

implementation.

This method does not have effect on messages created through the createMessage method

as they are not persistenly stored until the send action is invoked.

For messages in the inbox (deviceapis.messaging.FOLDER_INBOX), outbox

(deviceapis.messaging.FOLDER_OUTBOX) and sentbox

(deviceapis.messaging.FOLDER_SENTBOX) the implementation MUST only change

the isRead attribute of the Message object. For messages within the draft folder

(deviceapis.messaging.FOLDER_DRAFTS) the implementation MAY update other

attributes as well. However, this is up to the actual implementation and relies on the

underlying system.

The implementation has to make sure that an updated Message object is provided in the

success callback, which represents the current status of the message. The developer is

expected to use this updated message for comparison with the former object to check

which fields have or have not been transferred by the implementation.

If any of the input parameters is not compatible with the expected type for that parameter

a DeviceAPIError with code TYPE_MISMATCH_ERR MUST be synchronously

thrown.

If this feature is not supported, a DeviceAPIError with code NOT_SUPPORTED_ERR

MUST be returned in the errorCallback. If this functionality is not allowed the

errorCallback MUST be invoked with a DeviceAPIError with code SECURITY_ERR.

If the successCallback contains an invalid value (e.g. null or undefined), a

DeviceAPIError with code INVALID_VALUES_ERR MUST be returned.

If any other error occurs, while trying to update the messages, the errorCallback function

that was passed in the invocation MUST be called including a DeviceAPIError object

with code UNKNOWN_ERR.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 156 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

If the errorCallback does not contain a valid function (e.g. null), in case of any error that

should be returned in the errorCallback (see above), the implementation MUST silently

fail and no further action is required (i.e. the error is not notified to the developer).

Parameters

 successCallback

o Optional: No.

o Nullable: No

o Type: UpdateMessageSuccessCallback

o Description: Function to call on successful update

 errorCallback

o Optional: Yes.

o Nullable: No

o Type: ErrorCallbackErrorCallbackErrorCallback

o Description: Function to call on unsuccessful update

Return value

PendingOperation to cancel the asynchronous call

Exceptions

 DeviceAPIError:

TYPE_MISMATCH_ERR if any input parameter is not compatible with the

expected type for that parameter.

2.4. MessageFilter

Filter to restrict the items returned by the findMessages method

 [Callback, NoInterfaceObject] interface MessageFilter {

 attribute DOMString id;

 attribute ShortArray type;

 attribute ShortArray folder;

 attribute Date startTimestamp;

 attribute Date endTimestamp;

 attribute DOMString from;

 attribute StringArray to;

 attribute StringArray cc;

 attribute StringArray bcc;

 attribute DOMString body;

 attribute boolean isRead;

 attribute boolean messagePriority;

 attribute DOMString subject;

 };

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 157 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

When used this filter in the findMessages operation, the result-set of the search MUST only

contain the Message entries that match the filter values.

An entry matches the filter, if the attributes of the entry matches all the attributes of the filter

with values different to undefined or null. I.e. the search is performed in a similar manner to a

SQL "AND" operation.

An attribute of the Message entry matches the filter value according to the following rules:

For filter attributes of type DOMString an entry matches this value if its corresponding attribute

is exactly the same than the filter one unless the filter contains U+0025 'PERCENT SIGN'

wildcard character(s). If wildcards are used, the behavior is similar to the LIKE condition in SQL

('%' matches any string of any length - including zero length). In order to specify that a

'PERCENT SIGN' character is to be considered literally instead of interpreting it as a wildcard,

developers may escape it with the backslash character.

For filter attributes of type StringArray the same rules as for filter attributes of type DOMString

apply for each of the fields within the given Array separately. The search for all included fields

is performed similar to a SQL "AND" operation in the end without taking into account the

(possible) difference in ordering between Message fields as well as MessageFilter fields.

For filter attributes of an array of WebIDL numeric type (type), an entry matches it only if the

corresponding entry attribute has exactly the same value as any of the array elements.

For filter attributes of any WebIDL boolean type (isRead, messagePriority) an entry matches it

only if the corresponding entry attribute has exactly the same state (i.e. true or false).

For message attributes of type Date (i.e. timestamp), a couple of filter attributes are included

(initial and end), in order to allow looking for messages between two dates. If both initial and

end dates are different to null, a message matches the filter if its corresponding attribute is

between initial and end dates (including them). If only the initial date contains a value different

to null, a message matches the filter if its corresponding attribute is later than or equal to the

initial one. If only the end date contains a value different to null, a message matches the filter if

its corresponding attribute is earlier than or equal to the end date.

Attributes
DOMString id

Used for filtering the Message id attribute.

Messages which id corresponds with this attribute (either exactly or with the specified

wildcards) match this filtering criteria.

ShortArray type

Used for filtering the Message type attribute.

Messages with type equals to one of the values in this array match the filtering criteria.

ShortArray folder

Used for filtering the Message folder attribute.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 158 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Messages with folder equals to one of the values in this array match the filtering criteria.

Date startTimestamp

Used for filtering the Message timestamp attribute.

Messages with date later than or equal to this attribute match the filtering criteria.

Date endTimestamp

Used for filtering the Message timestamp attribute.

Messages with date earlier than or equal to this attribute match the filtering criteria.

DOMString from

Used for filtering the Message from attribute.

Messages which from corresponds with this attribute (either exactly or with the specified

wildcards) match this filtering criteria.

StringArray to

Used for filtering the Message to attribute.

Messages which elements in the to array that correspond to all the elements of this

attribute (either exactly or with the specified wildcards) match this filtering criteria.

StringArray cc

Used for filtering the Message cc attribute.

Messages which elements in the cc array that correspond to all the elements of this

attribute (either exactly or with the specified wildcards) match this filtering criteria.

StringArray bcc

Used for filtering the Message bcc attribute.

Messages which elements in the bcc array that correspond to all the elements of this

attribute (either exactly or with the specified wildcards) match this filtering criteria.

DOMString body

Used for filtering the Message body attribute.

Messages which body corresponds with this attribute (either exactly or with the specified

wildcards) match this filtering criteria.

boolean isRead

Used for filtering the Message isRead attribute.

Messages which isRead corresponds exactly with this attribute match this filtering

criteria.

boolean messagePriority

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 159 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Used for filtering the Message messagePriority attribute.

Messages which messagePriority corresponds exactly with this attribute match this

filtering criteria.

DOMString subject

Used for filtering the Message subject attribute.

Messages which subject corresponds with this attribute (either exactly or with the

specified wildcards) match this filtering criteria.

2.5. MessageAttachment

Describes a message attachement

 interface MessageAttachment : File {

 readonly attribute DOMString MIMEType;

 };

This attribute extends the File interface (from W3C File reader

(http://dev.w3.org/2006/webapi/FileAPI/#file)) by concurrently implementing the

synchronizable interface. It allows attachments to be downloaded only if the user requests them

by the use of the sync method specified in the Synchronizable interface.

Attributes
readonly DOMString MIMEType

Describes the mime type of the attachment, e.g. "text/html".

This attribute is readonly.

2.6. FindMessagesSuccessCallback

findMessages specific success callback.

 [Callback=FunctionOnly, NoInterfaceObject] interface FindMessagesSuccessCallback {

 void onsuccess(in MessageArray messages);

 };

This callback interface specifies a success callback with a function taking a list of messages as

input argument. It is used in the findMessages asynchronous operation.

Methods
onsuccess

Method invoked when the asynchronous call completes successfully

Signature

void onsuccess(in MessageArray messages);

Parameters

 messages

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 160 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

o Optional: No.

o Nullable: No

o Type: MessageArray

o Description: The list of messages that correspond to the find criteria

Return value

void

2.7. UpdateMessageSuccessCallback

update specific success callback.

 [Callback=FunctionOnly, NoInterfaceObject] interface UpdateMessageSuccessCallback {

 void onsuccess(in Message message);

 };

This callback interface specifies a success callback with a function that will provide a message

object that is meant to represent the actual status of a message after an update has been triggered.

It is used in the update asynchronous operation on the Message interface.

Methods
onsuccess

Method invoked when the asynchronous call completes successfully

Signature

void onsuccess(in Message message);

Parameters

 message

o Optional: No.

o Nullable: No

o Type: Message

o Description: The new message representing the actual updated status

Return value

void

2.8. OnIncomingMessage

Interface for specifying the method called on new incoming message events.

 [Callback=FunctionOnly, NoInterfaceObject] interface OnIncomingMessage {

 void onevent (in Message message);

 };

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 161 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

This interface specifies a function that will provide a message object that represents the received

message. It is used in the onSMS(), onMMS(), onEmail() method invocation.

Methods
onevent

Method invoked when an incoming message is received

Signature

void onevent(in Message message);

Parameters

 message

o Optional: No.

o Nullable: No

o Type: Message

o Description: The message received

Return value

void

2.9. MessageSendCallback

Interface for specifying the methods to be called for message send results for each recipient.

 [Callback, NoInterfaceObject] interface MessageSendCallback {

 void onsuccess();

 void onmessagesendsuccess(in DOMString recipient);

 void onmessagesenderror(in DeviceAPIError error, in DOMString recipient);

 };

This interface specifies a set of functions that will be invoked every time the result of the send

operation to a recipient is obtained or when the message is successfully sent to all the recipients.

Methods
onsuccess

Method invoked when the message is successfully sent to all the recipients

Signature

void onsuccess();

Return value

void

onmessagesendsuccess

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 162 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Method invoked when the message is successfully sent to a recipient

Signature

void onmessagesendsuccess(in DOMString recipient);

Parameters

 recipient

o Optional: No.

o Nullable: No

o Type: DOMString

o Description: The recipient which the message has been sent to

Return value

void

onmessagesenderror

Method invoked when the message is unsuccessfully sent to a recipient

Signature

void onmessagesenderror(in DeviceAPIError error, in DOMString

recipient);

Parameters

 error

o Optional: No.

o Nullable: No

o Type: DeviceAPIError

o Description: The error code that identifies the reason of the failure

 recipient

o Optional: No.

o Nullable: No

o Type: DOMString

o Description: The recipient which the message has been sent to

Return value

void

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 163 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

2.10. PendingOperation

The PendingOperation interface

 [NoInterfaceObject] interface PendingOperation {

 void cancel ();

 };

The PendingOperation interface describes operation of cancellable aynchronous methods.

Cancellable asynchronous methods return PendingOperation objects exporting methods for

cancelling the operation.

Methods
cancel

Cancel method for cancelling asynchronous operation

Signature

void cancel();

Cancel ongoing asynchronous method call. Upon calling this method the runtime must

immediately stop the pending operation and return.

3. Type Definitions

3.1. MessageArray

Sequence of Message objects

 typedef sequence<Message> MessageArray;

3.2. FileArray

Array of files

 typedef File[] FileArray;

4. Features

This is the list of URIs used to declare this API's features, for use in the widget config.xml and as

identifier for service type in service discovery functionality. For each URI, the list of functions

covered is provided.

http://webinos.org/api/messaging

Access to the full Messaging module except the methods Messaging.sendMessage and

Messaging.find and the attribute Message.attachments

http://webinos.org/api/messaging.send

Access to the Messaging.sendMessage() method

http://webinos.org/api/messaging.find

Access to the Messaging.findMessages method

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 164 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

http://webinos.org/api/messaging.subscribe

Access to the Messaging.onSMS, Messaging.onMMS, Messaging.onEmail,

Messaging.onIM methods

http://webinos.org/api/messaging.attach

Access to the Message.attachments attribute.

5. Full WebIDL
module messaging {

 typedef sequence<Message> MessageArray;

 typedef File[] FileArray;

 [NoInterfaceObject] interface DeviceapisMessaging {

 readonly attribute Messaging messaging;

 };

 Deviceapis implements DeviceapisMessaging;

 [NoInterfaceObject] interface Messaging {

 const short TYPE_SMS = 1;

 const short TYPE_MMS = 2;

 const short TYPE_EMAIL = 3;

 const short TYPE_IM = 3;

 const unsigned short FOLDER_INBOX = 1;

 const unsigned short FOLDER_OUTBOX = 2;

 const unsigned short FOLDER_DRAFTS = 3;

 const unsigned short FOLDER_SENTBOX = 4;

 Message createMessage(in short type)

 raises(DeviceAPIError);

 PendingOperation sendMessage(in SuccessCallbackSuccessCallbackSuccessCallback

successCallback,

 in ErrorCallbackErrorCallbackErrorCallback

errorCallback,

 in Message message)

 raises(DeviceAPIError);

 PendingOperation sendMessage(in MessageSendCallback successCallback,

 in ErrorCallbackErrorCallbackErrorCallback

errorCallback,

 in Message message)

 raises(DeviceAPIError);

 PendingOperation findMessages(in FindMessagesSuccessCallback successCallback,

 in optional ErrorCallbackErrorCallbackErrorCallback

errorCallback,

 in optional MessageFilter filter)

 raises(DeviceAPIError);

 unsigned long onSMS(in OnIncomingMessage messageHandler)

 raises(DeviceAPIError);

 unsigned long onMMS(in OnIncomingMessage messageHandler)

 raises(DeviceAPIError);

 unsigned long onEmail(in OnIncomingMessage messageHandler)

 raises(DeviceAPIError);

 unsigned long onIM(in OnIncomingMessage messageHandler)

 raises(DeviceAPIError);

 void unsubscribe(in unsigned long subscriptionHandler)

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 165 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 raises(DeviceAPIError);

 };

 [NoInterfaceObject] interface Message {

 readonly attribute DOMString id;

 attribute short type;

 attribute short folder;

 readonly attribute Date timestamp;

 readonly attribute DOMString from;

 attribute StringArray to;

 attribute StringArray cc;

 attribute StringArray bcc;

 attribute DOMString body;

 attribute boolean isRead;

 attribute boolean priority;

 attribute DOMString subject;

 attribute FileArray attachments;

 PendingOperation update(in UpdateMessageSuccessCallback successCallback,

 in optional ErrorCallbackErrorCallbackErrorCallback

errorCallback)

 raises(DeviceAPIError);

 };

 Message implements Synchronisable;

 [Callback, NoInterfaceObject] interface MessageFilter {

 attribute DOMString id;

 attribute ShortArray type;

 attribute ShortArray folder;

 attribute Date startTimestamp;

 attribute Date endTimestamp;

 attribute DOMString from;

 attribute StringArray to;

 attribute StringArray cc;

 attribute StringArray bcc;

 attribute DOMString body;

 attribute boolean isRead;

 attribute boolean messagePriority;

 attribute DOMString subject;

 };

 interface MessageAttachment : File {

 readonly attribute DOMString MIMEType;

 };

 [Callback=FunctionOnly, NoInterfaceObject] interface FindMessagesSuccessCallback {

 void onsuccess(in MessageArray messages);

 };

 [Callback=FunctionOnly, NoInterfaceObject] interface UpdateMessageSuccessCallback {

 void onsuccess(in Message message);

 };

 [Callback=FunctionOnly, NoInterfaceObject] interface OnIncomingMessage {

 void onevent (in Message message);

 };

 [Callback, NoInterfaceObject] interface MessageSendCallback {

 void onsuccess();

 void onmessagesendsuccess(in DOMString recipient);

 void onmessagesenderror(in DeviceAPIError error, in DOMString recipient);

 };

 [NoInterfaceObject] interface PendingOperation {

 void cancel ();

 };

};

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 166 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

APIs: The nfc module

Webinos API Specifications

29 Jun 2011

Authors

 Hans Myrhaug (AmbieSense Ltd.) <hans@ambiesense.com>

 Stefano Vercelli (Telecom Italia) <stefano.vercelli@telecomitalia.it>

© 2011 webinos consortium, www.webinos.org.

Abstract

Near Field Communication (NFC) is an international standard (ISO/IEC 18092) that specifies an

interface and protocol for simple wireless interconnection of closely coupled devices operating at

13.56 MHz. (http://www.nfc-forum.org/specs/spec_list/). There are three groups of application

scenarios for NFC: The first one is to hold a device close to a wireless tag to exchange some

digital information or data. The second is to hold two devices close to each other in order to

exchange some information or data between them. The third one is to make payments by holding

mobile phones close to point of sales terminals instead of swiping smart cards.

Summary of Methods

Interface Method

PendingOperation boolean cancel()

NFCTag

void initNFCTagEvent(DOMString type, boolean bubbles, boolean cancelable,

ByteArray tagId, unsigned short technologyType, unsigned short ndefType,

unsigned short ndefRecType, DOMString? ndefRecordTextPayload, ByteArray

ndefRecordBinaryPayload)

NFCTagTechnology
void connect()

void close()

NFCTagTechnologyNdef
PendingOperation makeReadOnly(SuccessCallback successCallback,

ErrorCallback? errorCallback)

NdefMessage readCachedNdefMessage()

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 167 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Interface Method

PendingOperation readNdefMessage(NdefSuccessCallback successCallback,

ErrorCallback? errorCallback)

PendingOperation writeNdefMessage(SuccessCallback successCallback,

ErrorCallback? errorCallback, NdefMessage message)

NdefMessage createNdefMessage()

NdefMessage
void addTextNdefRecord(unsigned short type, DOMString payload)

void addBinaryNdefRecord(unsigned short type, ByteArray payload)

NdefRecord

NfcError

SuccessCallback void onsuccess()

ErrorCallback void onError(NfcError error)

NdefSuccessCallback void onSuccess(NdefMessage obj)

1. Introduction

Near Field Communication is a kind of radio-frequency identification (RFID) technology that

uses short-hold wireless communication to transfer messages between wireless NFC devices and

NFC tags. The wireless tags are physically attached onto/ mounted nearby a physical object.

The most common use case is for an NFC device to read the identifier and/or the contents of an

NFC tag. Another quite common use case is for an NFC device to write content to an NFC tag, if

the NFC tag allows this. The webinos NFC module supports both. There is also a third use case

where NFC devices pretend to be contactless smart cards e.g. for payment or ticketing purposes.

In general, our objective is with the webinos NFC module is to enable free competition for NFC

applications. This means that the goal is to allow any application developers to fully operate on

any of these modes.

The purpose of an NFC tag is to provide a small amount of digital data about the physical object

that it is associated with - or to help perform a task for the user. One can use either the tag

identifier, or some data stored on the tag, to achieve this.

An NFC tag can be viewed as a wireless bar code. It can be read by NFC devices within a range

of up to 10 centimetres. The amount of power and resources needed by the NFC device to read

and write to an NFC tag is very low.

- NFC APPLICATIONS AND USE CASES

NFC technology is increasingly taking part in every day activities. NFC enables digital data to be

associated with real world objects. NFC tags are more advanced than printed bar codes, because

one can store a few kilobytes of data on each NFC tag in addition to using its identifier.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 168 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

NFC is a wireless standard where messages must be exchanged and communicated in a

standardised way. This makes NFC very suitable for a wide range of ubiquitous applications.

Example applications are within logistics, health care, social media, infotainment, gaming,

mobile payments, access to places, system access, inventory control, exchange of business cards,

email addresses, web links, images, and so on.

- NFC CORE CONCEPTS

The core concepts of the NFC standard are:

* The NFC devices and NFC tags * The NFC Data Exchange Format

NFC devices are are typically mobile phones or computers with some NFC hardware and a

driver installed. Such devices are typically active and try to detect tags, or other devices, nearby.

The devices and tags can be provided with identifiers, and these can be both fixed or dynamic

depending on the application.

NFC tags can be worn by people or attached to objects in the environment. It enables

identification and exchange of a small amount of data in the form of standardised messages that

can contain up to several data records each. Each data record contains a header identifying the

data followed by the actual data itself. It is completely up to application developers to identify

the data, to understand it, and to use the data. Please note that sometimes the term payload is also

being used in NFC. Payload in an NFC context simply refers to the raw data or information

being stored.

- THE NFC DATA EXCHANGE FORMAT

The NFC Forum has specified the NFC Data Exchange Format (NDEF) to enable

interoperability when exchanging data between NFC devices and NFC tags. NDEF is a standard

that specifies the NDEF data structure format along with rules on how to compose an NDEF

message as a complete collection of NDEF records. An NDEF message is a lightweight, binary

message format.

It defines how to package application data as NDEF records. NDEF only specified the data

structure format to exchange application specific data in an interoperable way. It does not define

any record types in detail. Providing the record header and the actual record data is completely

up to the application developer to do.

NDEF is a compact and lightweight binary format. It can contain any data such as web links,

business cards, tiny applications, images, and so on. It is up the application developers to define

and fill it with literally any data suitable or needed for the application. It is the capabilities of the

NFC target that matters. Most NFC tags have generally a few kilobytes of available memory to

store the data (payload). NFC devices typically have much more memory available. There are

currently four types of NFC tags defined in the standard: type1, type 2, type 3, and type 4. The

type vary because of computing capabilities and low level commands, but all NFC targets have

to support the exchange of NDEF messages and records.

The advantage of NDEF is that it abstracts away from the specific NFC tags/ targets. An NDEF

message consists of a set of NDEF records. Each record must carry data/ payload. The type of

data can for instance be web links, MIME media types, or pre-defined NFC data types. An

NDEF record consists of two parts: 1) the header part, and 2) the data (payload) part. The

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 169 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

compact header part specifies the: i) type of data, ii) the length of the data in terms of octets, and

iii) an optional data identifier. The optional data identifier could for instance be used by

applications to nest data and records, or for other purposes such as signing. i) and ii) are

mandatory to specify in the header of a record. Also, the data (payload) part needs to be provided

to the record. The approach to specifying headers allows for compact the identification of

standardised data formats across NFC applications. It also allows for the identification of new

and custom data formats for any future NFC application.

The NDEF message format can accommodate literally any information or data of known and

initially unknown sizes. It allows an arbitrary set of information and data to be grouped together

into a single message. It also allows for the compact encapsulation of well-known data such as

web links. An NDEF message is not a general message description or document format like

MIME media types, HTML, XML and so on. Rather, the purpose is to enable applications to

take advantage of such descriptions and formats by encapsulating any of these as NDEF

messages and records.

The data (payload) length is an unsigned integer indicating the number of octets in the payload.

A compact, short-record layout is provided for very small payloads. The optional payload

identifier enables association of multiple data (payloads) and cross-referencing between them.

NDEF payloads may include nested NDEF messages or chains of linked chunks of unknown

length at the time the data is generated.

- BRIEFLY HOW NFC RADIOS AND MODULES WORK

NFC tags differ from many other RFID tags mainly because of the signal range of the NFC

transceivers. Some RFID tags can be read from 100 meters, which is the case when you drive a

car through a toll ring with an RFID tag. Such long range wireless tag needs an embedded

battery to be able to broadcast the identifier/ data back to the reader. However, because the signal

reach of NFC tags and devices is only a few centimetres, the actual NFC tags require no battery.

Instead, the active NFC device activates the passive NFC tag with an electro-magnetic field. This

field is sufficient to power the NFC chip and drive the data exchange.

- PLANNED OPERATING MODES FOR THE WEBINOS NFC

NFC devices can run in either reader-writer mode, peer-to-peer mode, or card emulation mode.

These three modes are based on the ISO/IEC 18092 NFC IP-1 and ISO/IEC 14443 contactless

smart card standards. Webinos aim to provide all three modes:

1. NFC reader/writer mode - the NFC device can read and write data to NFC tags. This is the

original intention of the NFC technologies. We foresee that most NFC applications will be using

this mode in the beginning. One use case is to hold a mobile towards a smart poster to obtain

information about a concert.

2. NFC peer to peer mode - two NFC devices exchange data with each other when held close.

The devices can connect and share any data/ files through the NFC Logical Link Control

Protocol (LLCP). This capability was added to the NFC standard because of the introduction of

NFC adapters to mobile phones.

3. NFC card emulation mode - an NFC device appears to another NFC device as a contactless

smart card. It makes the NFC device appear as a contactless smart card for payment/ ticketing to

other NFC devices. A contactless card an NFC tag with a tiny, secure application embedded on

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 170 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

it. Therefore, one needs to emulate cards through the execution of tiny, secure payment

applications towards the NFC module.

The implementation priority for the webinos NFC module is in the order if the above three

modes: We first will provide the NFC reader/writer mode, then we will deliver the NFC peer to

peer mode. Finally, we aim to get the NFC card emulation mode implemented, however, at the

moment this latter mode has a lower priority in webinos.

This specification provides a new DOM event ("nfctag") to discover when a nfc tag enters the

field of the device.

Code example
 window.addEventListener("nfctag", nfcListener, true);

 function nfcListener(event)

 {

 var techSelected = null;

 var techSupported = event.tag.techList;

 if(techSupported.length > 0) {

 for (var index=0; index < techSupported.length; index++) {

 if(techSupported[index].type == techSupported[index].TECH_NDEF) {

 techSelected = techSupported[index];

 }

 }

 }

 if(techSelected) {

 var ndefMessage = techSelected.readCachedNdefMessage();

 for (var index=0; index < ndefMessage.ndefRecords.length) {

 if(ndefMessage.ndefRecords[index].type = ndefMessage.NDEFRECTYPE_URI)

 alert("uri found:

"+ndefMessage.ndefRecords[index].textPayload);

 }

 }

 }

2. Interfaces

2.1. PendingOperation

Definition of pending op.

 [NoInterfaceObject] interface PendingOperation {

 boolean cancel();

 };

Methods
cancel

Cancel the async op.

Signature

boolean cancel();

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 171 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

2.2. NFCTag

NFC tag event.

 interface NFCTag : Event {

 readonly attribute ByteArray tagId;

 readonly attribute NFCTagTechnologyArray techList;

 void initNFCTagEvent(in DOMString type,

 in boolean bubbles,

 in boolean cancelable,

 in ByteArray tagId,

 in unsigned short technologyType,

 in unsigned short ndefType,

 in unsigned short ndefRecType,

 in DOMString? ndefRecordTextPayload,

 in optional ByteArray ndefRecordBinaryPayload

);

 };

Attributes
readonly ByteArray tagId

The identifier of the tag.

This attribute is readonly.

readonly NFCTagTechnologyArray techList

The list of technologies supported by the tag.

This attribute is readonly.

Methods
initNFCTagEvent

Method to set initial values of NFCTag event.

Signature

void initNFCTagEvent(in DOMString type, in boolean bubbles, in boolean

cancelable, in ByteArray tagId, in unsigned short technologyType, in

unsigned short ndefType, in unsigned short ndefRecType, in DOMString?

ndefRecordTextPayload, in optional ByteArray ndefRecordBinaryPayload);

The initNFCTagEvent() method must initialize the event in a manner analogous to the

initEvent() method in http://www.w3.org/TR/2010/WD-DOM-Level-3-Events-

20100907/. The method can for example be used with document.createEvent() and

EventTarget.dispatchEvent() to simulate a specific event. At the moment it should

simulate a read only ndef Tag containing a ndefMessage that includes a single

ndefRecord.

Parameters

 type

o Optional: No.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 172 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

o Nullable: No

o Type: DOMString

o Description: Event type i.e. 'sensor'

 bubbles

o Optional: No.

o Nullable: No

o Type: boolean

o Description: True if event bubbles

 cancelable

o Optional: No.

o Nullable: No

o Type: boolean

o Description: True if event cancelable

 tagId

o Optional: No.

o Nullable: No

o Type: ByteArray

o Description: id of the tag

 technologyType

o Optional: No.

o Nullable: No

o Type: unsigned short

o Description: type of technology supported by the tag; at the moment it must be
ndef.

 ndefType

o Optional: No.

o Nullable: No

o Type: unsigned short

o Description: type of ndef supported (see constants defined in
NFCTagTechnologyNdef)

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 173 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 ndefRecType

o Optional: No.

o Nullable: No

o Type: unsigned short

o Description: type of ndef record (see constants defined in NdefMessage)

 ndefRecordTextPayload

o Optional: No.

o Nullable: Yes

o Type: DOMString

o Description: textual payload of the ndef record

 ndefRecordBinaryPayload

o Optional: Yes.

o Nullable: No

o Type: ByteArray

o Description: binary payload of the ndef record

2.3. NFCTagTechnology

NFC technology.

 [NoInterfaceObject] interface NFCTagTechnology {

 const unsigned short TECH_OTHERS = 0;

 const unsigned short TECH_NFCA = 1;

 const unsigned short TECH_NFCB = 2;

 const unsigned short TECH_NFCF = 3;

 const unsigned short TECH_NFCV = 4;

 const unsigned short TECH_ISODEP = 5;

 const unsigned short TECH_NDEF = 6;

 readonly attribute unsigned short type;

 readonly attribute boolean isConnected;

 void connect();

 void close();

 };

Constants

unsigned short TECH_OTHERS

Constant identifying a non supported technology.

unsigned short TECH_NFCA

Constant identifying a NfcA technology.

unsigned short TECH_NFCB

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 174 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Constant identifying a NfcB technology.

unsigned short TECH_NFCF

Constant identifying a NfcF technology.

unsigned short TECH_NFCV

Constant identifying a NfcV technology.

unsigned short TECH_ISODEP

Constant identifying a IsoDep technology.

unsigned short TECH_NDEF

Constant identifying a Ndef technology.

Attributes
readonly unsigned short type

Type of technology.

This attribute is readonly.

readonly boolean isConnected

Attribute indicating if the tag is connected or not.

This attribute is readonly.

Methods
connect

Connects to the tag.

Signature

void connect();

close

Closes connection to the tag.

Signature

void close();

2.4. NFCTagTechnologyNdef

Ndef technology.

 [NoInterfaceObject] interface NFCTagTechnologyNdef : NFCTagTechnology {

 const unsigned short NDEFTYPE_OTHERS = 0;

 const unsigned short NDEFTYPE_NFCFORUMTYPE1 = 1;

 const unsigned short NDEFTYPE_NFCFORUMTYPE2 = 2;

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 175 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 const unsigned short NDEFTYPE_NFCFORUMTYPE3 = 3;

 const unsigned short NDEFTYPE_NFCFORUMTYPE4 = 4;

 const unsigned short NDEFTYPE_MIFARECLASSIC = 5;

 readonly attribute unsigned short ndefType;

 readonly attribute boolean isWritable;

 readonly attribute unsigned long maxNdefMessageSize;

 PendingOperation makeReadOnly(in SuccessCallback successCallback, in

optional ErrorCallback? errorCallback)

 raises(NfcException);

 NdefMessage readCachedNdefMessage();

 PendingOperation readNdefMessage(in NdefSuccessCallback

successCallback, in optional ErrorCallback? errorCallback)

 raises(NfcException);

 PendingOperation writeNdefMessage(in SuccessCallback successCallback,

in ErrorCallback? errorCallback, NdefMessage message)

 raises(NfcException);

 NdefMessage createNdefMessage();

 };

Code example
 window.addEventListener("nfctag", nfcListener, true);

 function nfcListener(event)

 {

 var techSelected = null;

 var techSupported = event.tag.techList;

 if(techSupported.length > 0) {

 for (var index=0; index < techSupported.length; index++) {

 if(techSupported[index].type == techSupported[index].TECH_NDEF) {

 techSelected = techSupported[index];

 }

 }

 }

 // write to the tag

 if(techSelected) {

 var newMsg = techSelected.createNdefMessage();

 newMsg.addTextNdefRecord(newMsg.NDEFRECTYPE_URI, "http://webinos.org");

 techSelected.writeNdefMessage(wSuccess, wError, newMsg);

 }

 }

 function wSuccess()

 {

 alert("write successfull");

 }

 function wError()

 {

 alert("write error");

 }

 Constants

unsigned short NDEFTYPE_OTHERS

Constant identifying a non supported Ndef format.

unsigned short NDEFTYPE_NFCFORUMTYPE1

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 176 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Constant identifying a Nfc forum type 1 Ndef tag.

unsigned short NDEFTYPE_NFCFORUMTYPE2

Constant identifying a Nfc forum type 2 Ndef tag.

unsigned short NDEFTYPE_NFCFORUMTYPE3

Constant identifying a Nfc forum type 3 Ndef tag.

unsigned short NDEFTYPE_NFCFORUMTYPE4

Constant identifying a Nfc forum type 4 Ndef tag.

unsigned short NDEFTYPE_MIFARECLASSIC

Constant identifying a Mifare classic Ndef formatted tag.

Attributes
readonly unsigned short ndefType

Attribute indicating the type of Ndef tag.

This attribute is readonly.

readonly boolean isWritable

Attribute indicating if the tag is writable or not.

This attribute is readonly.

readonly unsigned long maxNdefMessageSize

Attribute indicating the maximum size of Ndef messages.

This attribute is readonly.

Methods
makeReadOnly

This method makes a tag read-only.

Signature

PendingOperation makeReadOnly(in SuccessCallback successCallback, in

optional ErrorCallback? errorCallback);

When the operation is fully completed the onsuccess method of the successCallback is

called. Otherwise, the errorCallback will be invoked with an appropriate error code

amongst the following:

 IO_ERR: if the write operation fails.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 177 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Parameters

 successCallback

o Optional: No.

o Nullable: No

o Type: SuccessCallback

o Description: function to be invoked in case of success.

 errorCallback

o Optional: Yes.

o Nullable: Yes

o Type: ErrorCallback

o Description: function to be invoked in case of failure.

Return value

PendingOperation to cancel the asynchronous call

Exceptions

 NfcException:

with error code INVALID_ARGUMENT_ERR if parameters are of the wrong

type

readCachedNdefMessage

Retrieves the Ndef message received at discovery time.

Signature

NdefMessage readCachedNdefMessage();

Return value

The Ndef message received at discovery time.

readNdefMessage

This method reads a Ndef message.

Signature

PendingOperation readNdefMessage(in NdefSuccessCallback

successCallback, in optional ErrorCallback? errorCallback);

When the operation is fully completed the onsuccess method of the successCallback is

called. Otherwise, the errorCallback will be invoked with an appropriate error code

amongst the following:

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 178 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 IO_ERR: if the read operation fails.

Parameters

 successCallback

o Optional: No.

o Nullable: No

o Type: NdefSuccessCallback

o Description: function to be invoked in case of success.

 errorCallback

o Optional: Yes.

o Nullable: Yes

o Type: ErrorCallback

o Description: function to be invoked in case of failure.

Return value

PendingOperation to cancel the asynchronous call

Exceptions

 NfcException:

with error code INVALID_ARGUMENT_ERR if parameters are of the wrong

type

writeNdefMessage

Writes a Ndef message to the tag.

Signature

PendingOperation writeNdefMessage(in SuccessCallback successCallback,

in ErrorCallback? errorCallback, NdefMessage message);

When the operation is fully completed the onsuccess method of the successCallback is

called. Otherwise, the errorCallback will be invoked with an appropriate error code

amongst the following:

 IO_ERR: if the write operation fails.

Parameters

 successCallback

o Optional: No.

o Nullable: No

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 179 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

o Type: SuccessCallback

o Description: function to be invoked in case of success.

 errorCallback

o Optional: No.

o Nullable: Yes

o Type: ErrorCallback

o Description: function to be invoked in case of failure.

 message

o Optional: No.

o Nullable: No

o Type: NdefMessage

o Description: The message to be written.

Return value

PendingOperation to cancel the asynchronous call

Exceptions

 NfcException:

with error code INVALID_ARGUMENT_ERR if parameters are of the wrong

type

createNdefMessage

Create a new Ndef message.

Signature

NdefMessage createNdefMessage();

Return value

The new Ndef message; it is empty, that is does not contain ndef records.

2.5. NdefMessage

Ndef message.

 [NoInterfaceObject] interface NdefMessage {

 const unsigned short NDEFRECTYPE_UNKNOWN = 0;

 const unsigned short NDEFRECTYPE_URI = 1;

 const unsigned short NDEFRECTYPE_MEDIA = 2;

 const unsigned short NDEFRECTYPE_EMPTY = 3;

 const unsigned short NDEFRECTYPE_RTD = 4;

 const unsigned short NDEFRECTYPE_EXTERNALRTD = 5;

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 180 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 readonly attribute NdefRecordArray ndefRecords;

 void addTextNdefRecord(in unsigned short type, in optional DOMString

payload)

 raises(NfcException);

 void addBinaryNdefRecord(in unsigned short type, in ByteArray payload)

 raises(NfcException);

 };

Constants

unsigned short NDEFRECTYPE_UNKNOWN

Constant identifying an unknown Ndef record type.

unsigned short NDEFRECTYPE_URI

Constant identifying a uri Ndef record type.

unsigned short NDEFRECTYPE_MEDIA

Constant identifying a media Ndef record type.

unsigned short NDEFRECTYPE_EMPTY

Constant identifying an empty Ndef record type.

unsigned short NDEFRECTYPE_RTD

Constant identifying a RTD Ndef record type.

unsigned short NDEFRECTYPE_EXTERNALRTD

Constant identifying an external RTD Ndef record type.

Attributes
readonly NdefRecordArray ndefRecords

List of Ndef records.

This attribute is readonly.

Methods
addTextNdefRecord

Adds a text record to the Ndef message.

Signature

void addTextNdefRecord(in unsigned short type, in optional DOMString

payload);

TODO add exceptions

Parameters

 type

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 181 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

o Optional: No.

o Nullable: No

o Type: unsigned short

o Description: The type of the ndef record

 payload

o Optional: Yes.

o Nullable: No

o Type: DOMString

o Description: The text payload of the record

Exceptions

 NfcException:

with error code INVALID_ARGUMENT_ERR if parameters are of the wrong

type

addBinaryNdefRecord

Adds a binary record to the Ndef message.

Signature

void addBinaryNdefRecord(in unsigned short type, in ByteArray payload);

TODO add exceptions

Parameters

 type

o Optional: No.

o Nullable: No

o Type: unsigned short

o Description: The type of the ndef record

 payload

o Optional: No.

o Nullable: No

o Type: ByteArray

o Description: The binary payload of the record

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 182 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Exceptions

 NfcException:

with error code INVALID_ARGUMENT_ERR if parameters are of the wrong

type

2.6. NdefRecord

Ndef record.

 [NoInterfaceObject] interface NdefRecord {

 readonly attribute unsigned short type;

 readonly attribute DOMString textPayload;

 readonly attribute ByteArray binaryPayload;

 };

Chunk of records are assembled by the underlying implementation and returned as a single Ndef

record.

Attributes
readonly unsigned short type

The type of the record.

This attribute is readonly.

readonly DOMString textPayload

The textual payload of the record.

This attribute is readonly.

readonly ByteArray binaryPayload

The binary payload of the record.

This attribute is readonly.

2.7. NfcError

Interface for reporting Nfc specific errors.

 [NoInterfaceObject] interface NfcError {

 readonly attribute unsigned short code;

 readonly attribute DOMString message;

 const unsigned short UNKNOWN_ERR = 0;

 const unsigned short IO_ERR = 1;

 };

Constants

unsigned short UNKNOWN_ERR

Unknown error.

unsigned short IO_ERR

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 183 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

I/O error.

Attributes
readonly unsigned short code

Code assigned when an error has occurred in Nfc API processing.

This attribute is readonly.

readonly DOMString message

Human readable message assigned when an error has occurred in Nfc API processing.

This attribute is readonly.

2.8. SuccessCallback

Callback to be invoked in case of success.

 [Callback=FunctionOnly, NoInterfaceObject] interface SuccessCallback {

 void onsuccess();

 };

2.9. ErrorCallback

Callback to be invoked when an error occurs.

 [Callback=FunctionOnly, NoInterfaceObject] interface ErrorCallback {

 void onError(in NfcError error);

 };

2.10. NdefSuccessCallback

Callback to be invoked when reading a Ndef message.

 [Callback=FunctionOnly, NoInterfaceObject] interface NdefSuccessCallback {

 void onSuccess(in NdefMessage obj);

 };

3. Type Definitions

3.1. NFCTagTechnologyArray

Array of NFCTagTechnology.

 typedef NFCTagTechnology[] NFCTagTechnologyArray;

3.2. NdefRecordArray

Array of NdefRecord.

 typedef NdefRecord[] NdefRecordArray;

3.3. ByteArray

Array of 8-bit unsigned integer values.

 typedef octet[] ByteArray;

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 184 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

4. Exceptions

4.1. NfcException
 exception NfcException {

 const unsigned short UNKNOWN_ERR = 0;

 const unsigned short INVALID_ARGUMENT_ERR = 1;

 unsigned short code;

 DOMString message;

 };

Field
unsigned short code

Error code.

DOMString message

Error message.

5. Features

This is the list of URIs used to declare this API's features, for use in the widget config.xml and as

identifier for service type in service discovery functionality. For each URI, the list of functions

covered is provided.

http://webinos.org/api/nfc

Acccess to all the module. This feature provides access to the whole API.

http://webinos.org/api/nfc.read

Acccess to all the module except write operations.

6. Full WebIDL
module nfc {

 typedef NFCTagTechnology[] NFCTagTechnologyArray;

 typedef NdefRecord[] NdefRecordArray;

 typedef octet[] ByteArray;

 [NoInterfaceObject] interface PendingOperation {

 boolean cancel();

 };

 interface NFCTag : Event {

 readonly attribute ByteArray tagId;

 readonly attribute NFCTagTechnologyArray techList;

 void initNFCTagEvent(in DOMString type,

 in boolean bubbles,

 in boolean cancelable,

 in ByteArray tagId,

 in unsigned short technologyType,

 in unsigned short ndefType,

 in unsigned short ndefRecType,

 in DOMString? ndefRecordTextPayload,

 in optional ByteArray ndefRecordBinaryPayload

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 185 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

);

 };

 [NoInterfaceObject] interface NFCTagTechnology {

 const unsigned short TECH_OTHERS = 0;

 const unsigned short TECH_NFCA = 1;

 const unsigned short TECH_NFCB = 2;

 const unsigned short TECH_NFCF = 3;

 const unsigned short TECH_NFCV = 4;

 const unsigned short TECH_ISODEP = 5;

 const unsigned short TECH_NDEF = 6;

 readonly attribute unsigned short type;

 readonly attribute boolean isConnected;

 void connect();

 void close();

 };

 [NoInterfaceObject] interface NFCTagTechnologyNdef : NFCTagTechnology {

 const unsigned short NDEFTYPE_OTHERS = 0;

 const unsigned short NDEFTYPE_NFCFORUMTYPE1 = 1;

 const unsigned short NDEFTYPE_NFCFORUMTYPE2 = 2;

 const unsigned short NDEFTYPE_NFCFORUMTYPE3 = 3;

 const unsigned short NDEFTYPE_NFCFORUMTYPE4 = 4;

 const unsigned short NDEFTYPE_MIFARECLASSIC = 5;

 readonly attribute unsigned short ndefType;

 readonly attribute boolean isWritable;

 readonly attribute unsigned long maxNdefMessageSize;

 PendingOperation makeReadOnly(in SuccessCallback successCallback, in

optional ErrorCallback? errorCallback)

 raises(NfcException);

 NdefMessage readCachedNdefMessage();

 PendingOperation readNdefMessage(in NdefSuccessCallback

successCallback, in optional ErrorCallback? errorCallback)

 raises(NfcException);

 PendingOperation writeNdefMessage(in SuccessCallback successCallback,

in ErrorCallback? errorCallback, NdefMessage message)

 raises(NfcException);

 NdefMessage createNdefMessage();

 };

 [NoInterfaceObject] interface NdefMessage {

 const unsigned short NDEFRECTYPE_UNKNOWN = 0;

 const unsigned short NDEFRECTYPE_URI = 1;

 const unsigned short NDEFRECTYPE_MEDIA = 2;

 const unsigned short NDEFRECTYPE_EMPTY = 3;

 const unsigned short NDEFRECTYPE_RTD = 4;

 const unsigned short NDEFRECTYPE_EXTERNALRTD = 5;

 readonly attribute NdefRecordArray ndefRecords;

 void addTextNdefRecord(in unsigned short type, in optional DOMString

payload)

 raises(NfcException);

 void addBinaryNdefRecord(in unsigned short type, in ByteArray payload)

 raises(NfcException);

 };

 [NoInterfaceObject] interface NdefRecord {

 readonly attribute unsigned short type;

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 186 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 readonly attribute DOMString textPayload;

 readonly attribute ByteArray binaryPayload;

 };

 [NoInterfaceObject] interface NfcError {

 readonly attribute unsigned short code;

 readonly attribute DOMString message;

 const unsigned short UNKNOWN_ERR = 0;

 const unsigned short IO_ERR = 1;

 };

 exception NfcException {

 const unsigned short UNKNOWN_ERR = 0;

 const unsigned short INVALID_ARGUMENT_ERR = 1;

 unsigned short code;

 DOMString message;

 };

 [Callback=FunctionOnly, NoInterfaceObject] interface SuccessCallback {

 void onsuccess();

 };

 [Callback=FunctionOnly, NoInterfaceObject] interface ErrorCallback {

 void onError(in NfcError error);

 };

 [Callback=FunctionOnly, NoInterfaceObject] interface NdefSuccessCallback {

 void onSuccess(in NdefMessage obj);

 };

};

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 187 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

APIs: The payment module

Webinos API Specifications

29 Jun 2011

Authors

 Christian Fuhrhop <christian.fuhrhop@fokus.fraunhofer.de>

© 2011 webinos consortium, www.webinos.org.

Abstract

Interface for Payment functions.

Summary of Methods

Interface Method

WebinosPayment

Payment

PendingOperation

createShoppingBasket(SuccessShoppingBasketCallback successCallback,

PaymentErrorCB errorCallback, DOMString serviceProviderID,

DOMString customerID, DOMString shopID)

ShoppingBasket

PendingOperation addItem(PaymentSuccessCB successCallback,

PaymentErrorCB errorCallback, ShoppingItem item)

PendingOperation update(PaymentSuccessCB successCallback,

PaymentErrorCB errorCallback)

PendingOperation checkout(PaymentSuccessCB successCallback,

PaymentErrorCB errorCallback)

void release()

ShoppingItem

SuccessShoppingBasketCallback void onSuccess(ShoppingBasket basket)

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 188 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Interface Method

PaymentSuccessCB void onSuccess()

PaymentErrorCB void onError(PaymentError error)

PendingOperation void cancel()

PaymentError

1. Introduction

This API provides generic shopping basket functionality to provide in-app payment.

It is not linked to a specific payment service provider and is designed to be sufficiently generic to

be mapable to various payment services like GSMA OneAPI, Andoid Payment API or PayPal.

2. Interfaces

2.1. WebinosPayment

The WebinosPayment interface describes the part of the payment API accessible through the

webinos object.

 [NoInterfaceObject] interface WebinosPayment {

 readonly attribute Payment payment;

 };

 webinoscore::Webinos implements WebinosPayment;

Attributes
readonly Payment payment

webinos.payment object.

This attribute is readonly.

2.2. Payment

The Payment interface

[NoInterfaceObject] interface Payment {

 PendingOperation createShoppingBasket(in SuccessShoppingBasketCallback

successCallback, in PaymentErrorCB errorCallback,

 in DOMString serviceProviderID, in DOMString customerID, in DOMString shopID)

 raises(PaymentException);

 };

The Payment interface provides access to payment functionality.

The API supports creation of a shopping basket, adding items to the shopping basket, proceeding

to checkout and releasing the shopping basket.

This essentially echoes the usual 'shopping basket' system used on many web sites.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 189 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

The code example below refunds the user for a returned CD and charges for the deluxe edition of

that CD, demonstarting charging and refunding payments.

Code example

 webinons.payment.createShoppingBasket(openBasketSuccess, paymentFailure,

"PayPal", "mymail@provider.com", "ShopName12345");

 var myBasket = null;

 // Define the openBasketSuccess success callback.

 function openBasketSuccess(basket) {

 alert("Shopping basket was opened successfully");

 myBasket = basket;

 // refound for a CD

 myBasket.addItem(CD2346278, paymentFailure,

 { productID: 'DCD2346233',

 description: 'Best of Ladytron 00-10 by Ladytron (Audio CD -

2011)',

 currency: 'EUR',

 itemPrice: -14.99,

 itemCount: 1}

 }

 // Define the refundItemSuccess success callback.

 function refundSuccess() {

 alert("Adding of refunding item was handled successfully");

 // charge for the deluxe CD

 myBasket.addItem(addItemSuccess, paymentFailure,

 { productID: 'DCD2346233',

 description: 'Best of Ladytron 00-10 (Deluxe Edition) by

Ladytron (Audio CD - 2011)',

 currency: 'EUR',

 itemPrice: 17.98,

 itemCount: 1}

 }

 // Define the addItemSuccess success callback.

 function addItemSuccess() {

 alert("Adding of new item was handled successfully");

 // now close the bill and perform the actual payment

 myBasket.update(updateSuccess, paymentFailure);

 }

 // Define the updateSuccess success callback.

 function updateSuccess() {

 alert("Total amount is: "myBasket.totalAmount+" Tax is

"+myBasket.tax);

 // now close the bill and perform the actual payment

 myBasket.checkout(checkoutSuccess, paymentFailure);

 }

 // Define the checkoutSuccess success callback.

 function checkoutSuccess() {

 alert("Checkout handled successfully - payment was performed.");

 if (myBasket != null) myBasket.release();

 }

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 190 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 // Define the paymentFailure failure callback.

 function paymentFailure(e) {

 alert("Failure occured during payment.");

 if (myBasket != null) myBasket.release();

 }

Methods
createShoppingBasket

Creates a shopping basket

Signature

PendingOperation createShoppingBasket(in SuccessShoppingBasketCallback

successCallback, in PaymentErrorCB errorCallback, in DOMString

serviceProviderID, in DOMString customerID, in DOMString shopID);

Parameters

 successCallback

o Optional: No.

o Nullable: No

o Type: SuccessShoppingBasketCallback

o Description: Callback issued when the shopping basket is created

 errorCallback

o Optional: No.

o Nullable: No

o Type: PaymentErrorCB

o Description: Callback issued if an error occurs during the creation of the
shopping basket

 serviceProviderID

o Optional: No.

o Nullable: No

o Type: DOMString

o Description: is the name of the payment provider to be used

 customerID

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 191 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

o Optional: No.

o Nullable: No

o Type: DOMString

o Description: is identification of the person making the payment as known to the
payment provider

 shopID

o Optional: No.

o Nullable: No

o Type: DOMString

o Description: is the identification of the shop the payment is made to

Return value

PendingOperation enabling the requester to cancel this request.

Exceptions

 PaymentException:

INVALID_ARGUMENT_ERROR if an invalid argument is passed

2.3. ShoppingBasket

The ShoppingBasket interface provides access to a shopping basket

[NoInterfaceObject] interface ShoppingBasket {

 readonly attribute ShoppingItem[] items;

 readonly attribute ShoppingItem[] extras;

 readonly attribute float totalBill;

 PendingOperation addItem(in PaymentSuccessCB successCallback, in

PaymentErrorCB errorCallback, in ShoppingItem item)

 raises(PaymentException);

 PendingOperation update(in PaymentSuccessCB successCallback, in PaymentErrorCB

errorCallback)

 raises(PaymentException);

 PendingOperation checkout(in PaymentSuccessCB successCallback, in

PaymentErrorCB errorCallback)

 raises(PaymentException);

 void release();

 };

The shopping basket represents a current payment action and allows to add a number of items to

the basket before proceeding to checkout.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 192 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Attributes
readonly ShoppingItem [] items

List of items currently in the shopping basket.

These are the items that have been added with addItem.

No exceptions

This attribute is readonly.

readonly ShoppingItem [] extras

Automatically generated extra items, typically rebates, taxes and shipping costs.

These items are automatically added to the shopping basket by update() (or after the

addition of an item to the basket).

These items can contain such 'virtual' items as payback schemes, rebates, taxes, shipping

costs and other items that are calculated on the basis of the regular items added.

No exceptions

This attribute is readonly.

readonly float totalBill

The total amount that will be charged to the user on checkout.

Will be updated by update(), may be updated by addItem().

No exceptions

This attribute is readonly.

Methods
addItem

Adds an item to a shopping basket.

Signature

PendingOperation addItem(in PaymentSuccessCB successCallback, in

PaymentErrorCB errorCallback, in ShoppingItem item);

Parameters

 successCallback

o Optional: No.

o Nullable: No

o Type: PaymentSuccessCB

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 193 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

o Description: Callback issued when the adding of the item to the shopping
basket is correctly finished.

 errorCallback

o Optional: No.

o Nullable: No

o Type: PaymentErrorCB

o Description: Callback issued if an error occurs during adding the amount

 item

o Optional: No.

o Nullable: No

o Type: ShoppingItem

o Description: the item to purchase

Return value

PendingOperation enabling the requester to cancel this request.

Exceptions

 PaymentException:

INVALID_ARGUMENT_ERROR if an invalid argument is passed

update

Updates the shopping basket

Signature

PendingOperation update(in PaymentSuccessCB successCallback, in

PaymentErrorCB errorCallback);

The update function updates the values in the shopping baskets, based on the added

items. Such updates may include taxes, calculating the total amount, shipping costs or

rebate calculations.

While this, preferably, is internally updated after the adding of each item, such an update

might require communication with the payment service provider and it might be

undesireable in specific implementations to perform such a query after each individual

item, so a specifc update function is provided to force such an update.

The checkout function will always perform an update internally before payment.

Parameters

 successCallback

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 194 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

o Optional: No.

o Nullable: No

o Type: PaymentSuccessCB

o Description: Callback issued when the update is performed

 errorCallback

o Optional: No.

o Nullable: No

o Type: PaymentErrorCB

o Description: Callback issued if an error occurs during update

Return value

PendingOperation enabling the requester to cancel this request.

Exceptions

 PaymentException:

INVALID_ARGUMENT_ERROR if an invalid argument is passed

checkout

Performs the checkout of the shopping basket.

Signature

PendingOperation checkout(in PaymentSuccessCB successCallback, in

PaymentErrorCB errorCallback);

The items in the shopping basket will be charged to the shopper.

Depending on the implementation of the actual payment service, this function might

cause the checkout screen of the payment service provider to be displayed.

Parameters

 successCallback

o Optional: No.

o Nullable: No

o Type: PaymentSuccessCB

o Description: Callback issued when the checkout is performed and payment is
made

 errorCallback

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 195 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

o Optional: No.

o Nullable: No

o Type: PaymentErrorCB

o Description: Callback issued if an error occurs during adding the amount

Return value

PendingOperation enabling the requester to cancel this request.

Exceptions

 PaymentException:

INVALID_ARGUMENT_ERROR if an invalid argument is passed

release

Releases a shopping basket.

Signature

void release();

The current shopping basket will be released.

If no checkout has been performed, the initiated shopping transaction will be cancelled.

Return value

void

2.4. ShoppingItem

The ShoppingItem captures the attributes of a single shopping product

 [NoInterfaceObject] interface ShoppingItem {

 attribute DOMString productID;

 attribute DOMString description;

 attribute DOMString currency;

 attribute float itemPrice;

 attribute unsigned long itemCount;

 readonly attribute unsigned long itemsPrice;

 };

The shopping basket represents a current payment action and allows to add a number of items to

the basket before proceeding to checkout.

Attributes
DOMString productID

An id that allows the shop to identify the purchased item

No exceptions

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 196 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

DOMString description

A human-readable text to appear on the bill, so the user can easily see what they bought.

No exceptions

DOMString currency

The 3-figure code as per ISO 4217.

No exceptions

float itemPrice

The price per individual item in the currency given above, a negative number represents a

refund.

No exceptions

unsigned long itemCount

The number of identical items purchased

No exceptions

readonly unsigned long itemsPrice

Price for all products in this shopping item.

Typically this is itemPrice*itemCount, but special '3 for 2' rebates might apply.

Updated by the shopping basket update function.

No exceptions

This attribute is readonly.

2.5. SuccessShoppingBasketCallback

Callback for successful creation of a shopping basket

 [Callback=FunctionOnly, NoInterfaceObject]

 interface SuccessShoppingBasketCallback {

 void onSuccess (ShoppingBasket basket);

 };

Methods
onSuccess

Callback for successful creation of a shopping basket

Signature

void onSuccess(ShoppingBasket basket);

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 197 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Parameters

 basket

o Optional: No.

o Nullable: No

o Type: ShoppingBasket

o Description: The shopping basket to which items can be added.

Return value

void

2.6. PaymentSuccessCB

Callback for successful payment related functions

 [Callback=FunctionOnly, NoInterfaceObject]

 interface PaymentSuccessCB {

 void onSuccess ();

 };

Methods
onSuccess

Callback for successful of payment related functions

Signature

void onSuccess();

Return value

void

2.7. PaymentErrorCB

Callback for errors during payment related functions

 [Callback=FunctionOnly, NoInterfaceObject]

 interface PaymentErrorCB {

 void onError (in PaymentError error);

 };

Methods
onError

Callback for errors during payment related functions

Signature

void onError(in PaymentError error);

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 198 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Parameters

 error

o Optional: No.

o Nullable: No

o Type: PaymentError

o Description: The Payment API related error object of an unsuccessful
asynchronous operation.

Return value

void

2.8. PendingOperation

The PendingOperation interface

 [NoInterfaceObject] interface PendingOperation {

 void cancel ();

 };

The PendingOperation interface describes objects that are returned by asynchronous methods

that are cancellable. It makes it possible to bring these operations to a stop if they haven't

produced a result within a desired time or before a given event, thereby possibly reclaiming

resources.

Methods
cancel

Method Cancel

Signature

void cancel();

Cancel the pending asynchronous operation. When this method is called, the user agent

must immediately bring the operation to a stop and return. No success or error callback

for the pending operation will be invoked.

2.9. PaymentError

Payment specific errors.

 interface PaymentError {

 const unsigned short PAYMENT_SHOPPING_BASKET_OPEN_ERROR = 1;

 const unsigned short PAYMENT_SHOPPING_BASKET_NOT_OPEN_ERROR = 2;

 const unsigned short PAYMENT_CHARGE_FAILED = 3;

 const unsigned short PAYMENT_REFUND_NOT_SUPPORTED = 4;

 const unsigned short PAYMENT_REFUND_FAILED = 5;

 const unsigned short PAYMENT_CHARGEABLE_EXCEEDED = 6;

 const unsigned short PAYMENT_AUTHENTICATION_FAILED = 7;

 readonly attribute unsigned short code;

 readonly attribute DOMString message;

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 199 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 };

The PaymentError interface encapsulates all errors in the manipulation of payments objects in

the Payment API.

Constants

unsigned short PAYMENT_SHOPPING_BASKET_OPEN_ERROR

Bill is already open

unsigned short PAYMENT_SHOPPING_BASKET_NOT_OPEN_ERROR

Bill is not open

unsigned short PAYMENT_CHARGE_FAILED

Charging operation failed, the charge was not applied

unsigned short PAYMENT_REFUND_NOT_SUPPORTED

Refunds not supported

unsigned short PAYMENT_REFUND_FAILED

Refund failed

unsigned short PAYMENT_CHARGEABLE_EXCEEDED

Chargeable amount exceeded

unsigned short PAYMENT_AUTHENTICATION_FAILED

Chargeable Authentication failed. Payment credentials are incorrect.

Attributes
readonly unsigned short code

An error code assigned by an implementation when an error has occurred in Payment

processing.

No exceptions.

This attribute is readonly.

readonly DOMString message

A text describing an error occuring in the Payment in human readable form.

No exceptions.

This attribute is readonly.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 200 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

3. Exceptions

3.1. PaymentException

Payment API specific errors.

 exception PaymentException {

 const unsigned short INVALID_ARGUMENT_ERROR = 1;

 unsigned short code;

 DOMString message;

 };

The PaymentException interface encapsulates all errors in calling of the Payment API.

Field
unsigned short code

An error code assigned by an implementation when an error has occurred in Payment

API processing.

DOMString message

A text describing an error occuring in the Payment API in human readable form.

4. Features

This is the list of URIs used to declare this API's features, for use in the widget config.xml and as

identifier for service type in service discovery functionality. For each URI, the list of functions

covered is provided.

http://webinos.org/api/payment

Identifies all payment interactions.

5. Full WebIDL
module payment {

 [NoInterfaceObject] interface WebinosPayment {

 readonly attribute Payment payment;

 };

[NoInterfaceObject] interface Payment {

 PendingOperation createShoppingBasket(in SuccessShoppingBasketCallback

successCallback, in PaymentErrorCB errorCallback,

 in DOMString serviceProviderID, in DOMString customerID, in DOMString shopID)

 raises(PaymentException);

 };

[NoInterfaceObject] interface ShoppingBasket {

 readonly attribute ShoppingItem[] items;

 readonly attribute ShoppingItem[] extras;

 readonly attribute float totalBill;

 PendingOperation addItem(in PaymentSuccessCB successCallback, in

PaymentErrorCB errorCallback, in ShoppingItem item)

 raises(PaymentException);

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 201 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 PendingOperation update(in PaymentSuccessCB successCallback, in PaymentErrorCB

errorCallback)

 raises(PaymentException);

 PendingOperation checkout(in PaymentSuccessCB successCallback, in

PaymentErrorCB errorCallback)

 raises(PaymentException);

 void release();

 };

 [NoInterfaceObject] interface ShoppingItem {

 attribute DOMString productID;

 attribute DOMString description;

 attribute DOMString currency;

 attribute float itemPrice;

 attribute unsigned long itemCount;

 readonly attribute unsigned long itemsPrice;

 };

 [Callback=FunctionOnly, NoInterfaceObject]

 interface SuccessShoppingBasketCallback {

 void onSuccess (ShoppingBasket basket);

 };

 [Callback=FunctionOnly, NoInterfaceObject]

 interface PaymentSuccessCB {

 void onSuccess ();

 };

 [Callback=FunctionOnly, NoInterfaceObject]

 interface PaymentErrorCB {

 void onError (in PaymentError error);

 };

 [NoInterfaceObject] interface PendingOperation {

 void cancel ();

 };

 interface PaymentError {

 const unsigned short PAYMENT_SHOPPING_BASKET_OPEN_ERROR = 1;

 const unsigned short PAYMENT_SHOPPING_BASKET_NOT_OPEN_ERROR = 2;

 const unsigned short PAYMENT_CHARGE_FAILED = 3;

 const unsigned short PAYMENT_REFUND_NOT_SUPPORTED = 4;

 const unsigned short PAYMENT_REFUND_FAILED = 5;

 const unsigned short PAYMENT_CHARGEABLE_EXCEEDED = 6;

 const unsigned short PAYMENT_AUTHENTICATION_FAILED = 7;

 readonly attribute unsigned short code;

 readonly attribute DOMString message;

 };

 exception PaymentException {

 const unsigned short INVALID_ARGUMENT_ERROR = 1;

 unsigned short code;

 DOMString message;

 };

 webinoscore::Webinos implements WebinosPayment;

};

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 202 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

APIs: The sensors module

Webinos API Specifications

30 Jun 2011

Authors

 Claes Nilsson <claes1.nilsson@sonyericsson.com>

© 2011 webinos consortium, www.webinos.org.

Abstract

The Generic Sensor API

Summary of Methods

Interface Method

Sensor
PendingOp configureSensor(ConfigureSensorOptions options,

ConfigureSensorCB successCB, SensorErrorCB errorCB)

ConfigureSensorCB void onSuccess()

SensorErrorCB void onErrror(SensorCBError error)

SensorCBError

ConfigureSensorOptions

PendingOp void cancel()

SensorEvent

void initSensorEvent(DOMString type, boolean bubbles, boolean cancelable,

DOMString sensorType, DOMString sensorId, unsigned short accuracy,

unsigned short rate, boolean interrupt, float [] sensorValues)

1. Introduction

The Webinos Generic Sensor API provides web applications with an API to access data from

sensors in the device, connected to the device or in another device.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 203 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

The API is agnostic to underlying low level methods for sensor discovery and communication

with sensors. However, the sensor API should be used in combination with the general Webinos

service discovery methods findServices() and bind(). The sensors services can be located in the

user's personal zone or be shared on the current network.

The API consists of two interfaces:

- A sensor interface that provides attributes for the sensors and a method to configure a selected

sensor.

- A DOM level 3 event that provides sensor data.

Currently 5 different sensor types are defined but the API could easily be extended with

additional sensor types.

This is an experimental API and security and privacy issues are not specifically addressed in the

specification. If access to security or privacy sensitive sensors are provided the user agent must

either acquire access permission through a user interface or control access through a prearranged

trust relationship with users.

2. Interfaces

2.1. Sensor

This interface defines sensor properties. It is a sensor specific extension to the interface Service

in the ServiceDiscovery module. The added attributes correspond to Android sensor API

attributes.

 [NoInterfaceObject] interface Sensor : Service {

 readonly attribute float? maximumRange;

 readonly attribute unsigned long? minDelay;

 readonly attribute float? power;

 readonly attribute float? resolution;

 readonly attribute DOMString? vendor;

 readonly attribute unsigned long? version;

 PendingOp configureSensor (in ConfigureSensorOptions options, in

ConfigureSensorCB successCB, in optional SensorErrorCB errorCB)

 raises (SensorException);

 };

Code example
 // Handle that can be used to cancel the ongoing asynchronous discovery

process.

 var findHandle = 0;

 // Handle from service.bind.

 var sensorHandle = 0;

 // Array of found temperature sensors object.

 var availableTempSensors = {};

 // Callback method that display a list of found sensors in a selection list

 // The selection list is dynamically extended every time a new sensor is

discovered.

 function sensorFoundCB(sensor) {

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 204 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 var selectlist = document.getElementById('sensorlist');

 var option = document.createElement('option');

 option.value = sensor.id;

 option.appendChild(document.createTextNode(sensor.displayName));

 availableTempSensors [sensor.id] = sensor;

 selectlist.appendChild(option);

 }

 // Callback when bind has been successfully executed on the service object. The

Sensor is authorized and ready to use

 function bindCB(mySensor) {

 alert('Sensor ' + mySensor.displayName + ' with ID: ' + mySensor.id +

' selected');

 // Configure the sensor.

 mySensor.configureSensor ({timeout: 120, rate: SENSOR_DELAY_NORMAL,

interrupt: False},

 successHandler () {alert('Sensor ' +

mySensor.displayName + ' with ID: ' + mySensor.id +

 ' is configured')

},

 errorHandler (error) {alert('Sensor ' +

mySensor.displayName + ' with ID: ' + mySensor.id +

 ' configuration

failed' + ' with error: ' + error.message)});

 // Start listening to sensor events and log values.

 mySensor.addEventListener('sensor', function (event) {

 console.log(event.sensorValues[0]);

 var temp = document.getElementById('temp');

 temp.innerHTML = "Current temperature is: " +

event.sensorValues[0];

 }, true);

 }

 // Callback method that is invoked when user selects an option in the sensor

selection list

 function sensorSelected(sensor) {

 // Stops the findServices operation

 findHandle.cancel();

 // Binds to the sensor API to initiate an authorized objects used to

 // invoke services.

 sensorHandle = sensor.bind({onBind:bindCB});

 }

 // Get list of temperature sensors registered in the device through the

Service Discovery findServices() method

 findHandle =

window.webinos.discovery.findServices({api:'http://webinos.org/api/sensors.temperature

'}, {onFound:sensorFoundCB});

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 205 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 // Handle user selection of sensor

 var sensorlist = document.getElementById('sensorlist');

 sensorlist.addEventListener("change", function (e) {

 var sensor = availableTempSensors[e.target.value];

 if (sensor) {

 sensorSelected(sensor);

 }

 }, false);

Attributes
readonly float? maximumRange

Max range of sensor in the sensors unit.

This attribute is readonly.

readonly unsigned long? minDelay

Min delay of sensor allowed between two events in microsecond or zero if this sensor

only returns a value when the data it's measuring changes.

This attribute is readonly.

readonly float? power

Power consumption of sensor in mA used by this sensor while in use.

This attribute is readonly.

readonly float? resolution

Resolution of the sensor in the sensors unit.

This attribute is readonly.

readonly DOMString? vendor

Vendor string of this sensor.

This attribute is readonly.

readonly unsigned long? version

Version of the sensors module.

This attribute is readonly.

Methods
configureSensor

Configures a sensor.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 206 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Signature

PendingOp configureSensor(in ConfigureSensorOptions options, in

ConfigureSensorCB successCB, in optional SensorErrorCB errorCB);

Question: Do we need the ability to specify high and low thresholds? This is for example

not supported by Android sensor API.

Parameters

 options

o Optional: No.

o Nullable: No

o Type: ConfigureSensorOptions

o Description: Sensor configuration options.

 successCB

o Optional: No.

o Nullable: No

o Type: ConfigureSensorCB

o Description: Callback issued when sensor configuration succeeded.

 errorCB

o Optional: Yes.

o Nullable: No

o Type: SensorErrorCB

o Description: Callback issued if sensor configuration fails.

Return value

A pending operation object making it possible to cancel the configureSensor operation

Exceptions

 SensorException:

with appropriate error code.

2.2. ConfigureSensorCB

ConfigureSensorCB interface definition

 [Callback=FunctionOnly, NoInterfaceObject] interface ConfigureSensorCB {

 void onSuccess();

 };

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 207 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Methods
onSuccess

onSuccess The onSuccess method is called when configuration of a sensor succeeded.

Signature

void onSuccess();

2.3. SensorErrorCB

SensorErrorCB interface definition

 [Callback=FunctionOnly, NoInterfaceObject] interface SensorErrorCB {

 void onErrror(in SensorCBError error);

 };

Methods
onErrror

onError The onError method is called if an error occurs during the configureSensor()

process.

Signature

void onErrror(in SensorCBError error);

Parameters

 error

o Optional: No.

o Nullable: No

o Type: SensorCBError

o Description: The error object of an unsuccessful configureSensor()
asynchronous operation.

2.4. SensorCBError

SensorCBError interface definition

 [NoInterfaceObject] interface SensorCBError {

 const unsigned short UNKNOWN_ERROR = 0;

 const unsigned short TIMEOUT_ERROR = 1;

 const unsigned short ILLEGAL_SENSOR_TYPE_ERROR = 2;

 const unsigned short SENSOR_TYPE_NOT_SUPPORTED_ERROR = 3;

 const unsigned short ILLEGAL_SENSOR_ID_ERROR = 4;

 const unsigned short OTHER_ILLEGAL_INPUT_ARGUMENT_ERROR = 5;

 const unsigned short REQUESTED_RATE_NOT_SUPPORTED_ERROR = 6;

 const unsigned short REQUESTED_INTERRUPTMODE_NOT_SUPPORTED_ERROR = 7;

 const unsigned short PERMISSION_DENIED_ERROR = 50;

 readonly attribute unsigned short code;

 readonly attribute DOMString message;

 };

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 208 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Constants

unsigned short UNKNOWN_ERROR

Uknown error

unsigned short TIMEOUT_ERROR

No success callback within timeout period.

unsigned short ILLEGAL_SENSOR_TYPE_ERROR

Illegal sensor type

unsigned short SENSOR_TYPE_NOT_SUPPORTED_ERROR

Illegal sensor type

unsigned short ILLEGAL_SENSOR_ID_ERROR

Illegal sensor id

unsigned short OTHER_ILLEGAL_INPUT_ARGUMENT_ERROR

Other illegal input arguments

unsigned short REQUESTED_RATE_NOT_SUPPORTED_ERROR

Sensor rate requested through configureSensor() not supported

unsigned short REQUESTED_INTERRUPTMODE_NOT_SUPPORTED_ERROR

Interrupt mode requested through configureSensor() not supported

unsigned short PERMISSION_DENIED_ERROR

Permission denied

Attributes
readonly unsigned short code

Error code assigned when an error has occurred in configureSensor() processing.

This attribute is readonly.

readonly DOMString message

Human readable message assigned when an error has occurred in configureSensor()

processing.

This attribute is readonly.

2.5. ConfigureSensorOptions

ConfigureSensorOptions interface definition

 [NoInterfaceObject] interface ConfigureSensorOptions {

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 209 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 const unsigned short INFINITE = 0;

 const unsigned short SENSOR_DELAY_FASTEST = 0;

 const unsigned short SENSOR_DELAY_GAME = 1;

 const unsigned short SENSOR_DELAY_UI = 2;

 const unsigned short SENSOR_DELAY_NORMAL = 3;

 attribute unsigned short timeout;

 attribute unsigned short rate;

 attribute boolean interrupt;

 };

Constants

unsigned short INFINITE

INFINITE Timeout Value

unsigned short SENSOR_DELAY_FASTEST

The sensor is reporting data as fast as possible (rate attribute).

unsigned short SENSOR_DELAY_GAME

The sensor is reporting data with a rate suitable for games (rate attribute).

unsigned short SENSOR_DELAY_UI

The sensor is reporting data with a rate suitable for user interface (rate attribute).

unsigned short SENSOR_DELAY_NORMAL

The sensor is reporting data with a normal rate, e.g. suitable for screen orientation

changes (rate attribute).

Attributes
unsigned short timeout

A timeout value for when configureSensor() is canceled in seconds between 0-65535.

Default value is 120 seconds.

unsigned short rate

The requested rate of the sensor data.

boolean interrupt

The requested Interrupt mode of the sensor.

False = INTERRUPT_DISABLED (events fired with a fixed time interval)

True = INTERRUPT_ENABLED (events fired when value changes)

2.6. PendingOp

The PendingOp interface

 [NoInterfaceObject] interface PendingOp {

 void cancel ();

 };

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 210 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

The PendingOp interface describes objects that are returned by asynchronous methods that are

cancellable. It makes it possible to bring these operations to a stop if they haven't produced a

result within a desired time or before a given event, thereby possibly reclaiming resources.

TBD: Elaborate on cancel of ongoing configureSensor() operation...

Methods
cancel

Method Cancel

Signature

void cancel();

Cancel the pending asynchronous operation. When this method is called, the user agent

must immediately bring the operation to a stop and return. No success or error callback

for the pending operation will be invoked.

2.7. SensorEvent

This interface defines the "genericsensor" event type.

 interface SensorEvent : Event {

 const unsigned short SENSOR_STATUS_ACCURACY_HIGH = 4;

 const unsigned short SENSOR_STATUS_ACCURACY_MEDIUM = 3;

 const unsigned short SENSOR_STATUS_ACCURACY_LOW = 2;

 const unsigned short SENSOR_STATUS_UNRELIABLE = 1;

 const unsigned short SENSOR_STATUS_UNAVAILABLE = 0;

 readonly attribute DOMString sensorType;

 readonly attribute DOMString sensorId;

 readonly attribute unsigned short accuracy;

 readonly attribute unsigned short rate;

 readonly attribute boolean interrupt;

 readonly attribute float[] sensorValues;

 void initSensorEvent(in DOMString type,

 in boolean bubbles,

 in boolean cancelable,

 in DOMString sensorType,

 in DOMString sensorId,

 in unsigned short accuracy,

 in unsigned short rate,

 in boolean interrupt,

 in float[] sensorValues);

 };

Registration for generic sensor events is achieved by calling addEventListener instantiated on the

selected sensor object with event type set to "sensor" (see code example in the beginning of this

specification)

Constants

unsigned short SENSOR_STATUS_ACCURACY_HIGH

A constant describing that the sensor is reporting data with maximum accuracy.

unsigned short SENSOR_STATUS_ACCURACY_MEDIUM

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 211 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

A constant describing that the sensor is reporting data with an average level of accuracy,

calibrating with the environment may improve the reading.

unsigned short SENSOR_STATUS_ACCURACY_LOW

A constant describing that the sensor is reporting with low accuracy, calibrating with the

environment is needed.

unsigned short SENSOR_STATUS_UNRELIABLE

A constant describing that the sensor data cannot be trusted, calibrating is needed or the

environment does not allow reading.

unsigned short SENSOR_STATUS_UNAVAILABLE

A constant describing that the sensor is not available and no sensor data can be provided.

This accuracy attribute will for example take this value when contact is lost with a sensor

using Bluetooth communication.

Attributes
readonly DOMString sensorType

The type of sensor. This is a URI defining the sensor type according to the defined sensor

"feature" URI strings. See section "Features".

For the defined sensor types the sensorValues array contains the following data:

http://webinos.org/api/sensors.light:

sensorValue[0] = the measured ambient light level around the device in SI lux units.

sensorValue[1] = A normalized value between 0 and 1.

http://webinos.org/api/sensors.noise:

sensorValue[0] = the measured ambient noise around the device, in DB(SPL).

sensorValue[1] = A normalized value between 0 and 1.

http://webinos.org/api/sensors.temperature:

sensorValue[0] = the measured ambient temperature around the device, in degrees

Celsius.

sensorValue[1] = A normalized value between 0 and 1.

http://webinos.org/api/sensors.pressure:

sensorValue[0] = the measured atmospheric pressure around the device in hPa (millibar)

sensorValue[1] = A normalized value between 0 and 1.

http://webinos.org/api/sensors.proximity:

sensorValue[0] = Proximity sensor distance measured in centimeters.

sensorValue[1] = A normalized value between 0 and 1.Some sensor can only state "near"

(0) and "far" (1)

This attribute is readonly.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 212 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

readonly DOMString sensorId

The unique identity of the of the specific sensor

This attribute is readonly.

readonly unsigned short accuracy

The accuracy of the sensor

This attribute is readonly.

readonly unsigned short rate

The rate of the sensor data

This attribute is readonly.

readonly boolean interrupt

Interrupt mode of the sensor. The value is one of false = INTERRUPT_DISABLED

(events fired with a fixed time interval) true = INTERRUPT_ENABLED (events fired

when value changes)

This attribute is readonly.

readonly float [] sensorValues

Array of sensor values

This attribute is readonly.

Methods
initSensorEvent

Method to set initial values of sensor event.

Signature

void initSensorEvent(in DOMString type, in boolean bubbles, in boolean

cancelable, in DOMString sensorType, in DOMString sensorId, in unsigned

short accuracy, in unsigned short rate, in boolean interrupt, in

 float

 [] sensorValues);

The initSensorEvent() method must initialize the event in a manner analogous to the

initEvent() method in http://www.w3.org/TR/2010/WD-DOM-Level-3-Events-

20100907/. The method can for example be used with document.createEvent() and

EventTarget.dispatchEvent() to simulate a specific event. The sensorType, sensorId,

accuracy, rate, interrupt and sensorvalues arguments must initialize the attributes with the

same names.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 213 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Parameters

 type

o Optional: No.

o Nullable: No

o Type: DOMString

o Description: Event type i.e. 'sensor'

 bubbles

o Optional: No.

o Nullable: No

o Type: boolean

o Description: True if event bubbles

 cancelable

o Optional: No.

o Nullable: No

o Type: boolean

o Description: True if event cancelable

 sensorType

o Optional: No.

o Nullable: No

o Type: DOMString

o Description: Sensor type as a URI

 sensorId

o Optional: No.

o Nullable: No

o Type: DOMString

o Description: The unique identity of the specific sensor

 accuracy

o Optional: No.

o Nullable: No

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 214 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

o Type: unsigned short

o Description: Accuracy of sensor data

 rate

o Optional: No.

o Nullable: No

o Type: unsigned short

o Description: Rate

 interrupt

o Optional: No.

o Nullable: No

o Type: boolean

o Description: Interrupt mode

 sensorValues

o Optional: No.

o Nullable: No

o Type: array

o Description: Array of sensor values

3. Exceptions

3.1. SensorException

Defines the error codes for this module

 exception SensorException {

 const unsigned short INVALID_INPUT_ARGUMENT = 0;

 unsigned short code;

 DOMString message;

 };

Field
unsigned short code

Exception code

DOMString message

Exception message

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 215 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

4. Features

This is the list of URIs used to declare this API's features, for use in the widget config.xml and as

identifier for service type in service discovery functionality. For each URI, the list of functions

covered is provided.

http://webinos.org/api/sensors

Identifies all the sensor types.

http://webinos.org/api/sensors.light

Identifies the light sensor type.

http://webinos.org/api/sensors.noise

Identifies the noise sensor type.

http://webinos.org/api/sensors.temperature

Identifies the temperature sensor type.

http://webinos.org/api/sensors.pressure

Identifies the pressure sensor type.

5. Full WebIDL
module sensors {

 exception SensorException {

 const unsigned short INVALID_INPUT_ARGUMENT = 0;

 unsigned short code;

 DOMString message;

 };

 [NoInterfaceObject] interface Sensor : Service {

 readonly attribute float? maximumRange;

 readonly attribute unsigned long? minDelay;

 readonly attribute float? power;

 readonly attribute float? resolution;

 readonly attribute DOMString? vendor;

 readonly attribute unsigned long? version;

 PendingOp configureSensor (in ConfigureSensorOptions options, in

ConfigureSensorCB successCB, in optional SensorErrorCB errorCB)

 raises (SensorException);

 };

 [Callback=FunctionOnly, NoInterfaceObject] interface ConfigureSensorCB {

 void onSuccess();

 };

 [Callback=FunctionOnly, NoInterfaceObject] interface SensorErrorCB {

 void onErrror(in SensorCBError error);

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 216 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 };

 [NoInterfaceObject] interface SensorCBError {

 const unsigned short UNKNOWN_ERROR = 0;

 const unsigned short TIMEOUT_ERROR = 1;

 const unsigned short ILLEGAL_SENSOR_TYPE_ERROR = 2;

 const unsigned short SENSOR_TYPE_NOT_SUPPORTED_ERROR = 3;

 const unsigned short ILLEGAL_SENSOR_ID_ERROR = 4;

 const unsigned short OTHER_ILLEGAL_INPUT_ARGUMENT_ERROR = 5;

 const unsigned short REQUESTED_RATE_NOT_SUPPORTED_ERROR = 6;

 const unsigned short REQUESTED_INTERRUPTMODE_NOT_SUPPORTED_ERROR = 7;

 const unsigned short PERMISSION_DENIED_ERROR = 50;

 readonly attribute unsigned short code;

 readonly attribute DOMString message;

 };

 [NoInterfaceObject] interface ConfigureSensorOptions {

 const unsigned short INFINITE = 0;

 const unsigned short SENSOR_DELAY_FASTEST = 0;

 const unsigned short SENSOR_DELAY_GAME = 1;

 const unsigned short SENSOR_DELAY_UI = 2;

 const unsigned short SENSOR_DELAY_NORMAL = 3;

 attribute unsigned short timeout;

 attribute unsigned short rate;

 attribute boolean interrupt;

 };

 [NoInterfaceObject] interface PendingOp {

 void cancel ();

 };

 interface SensorEvent : Event {

 const unsigned short SENSOR_STATUS_ACCURACY_HIGH = 4;

 const unsigned short SENSOR_STATUS_ACCURACY_MEDIUM = 3;

 const unsigned short SENSOR_STATUS_ACCURACY_LOW = 2;

 const unsigned short SENSOR_STATUS_UNRELIABLE = 1;

 const unsigned short SENSOR_STATUS_UNAVAILABLE = 0;

 readonly attribute DOMString sensorType;

 readonly attribute DOMString sensorId;

 readonly attribute unsigned short accuracy;

 readonly attribute unsigned short rate;

 readonly attribute boolean interrupt;

 readonly attribute float[] sensorValues;

 void initSensorEvent(in DOMString type,

 in boolean bubbles,

 in boolean cancelable,

 in DOMString sensorType,

 in DOMString sensorId,

 in unsigned short accuracy,

 in unsigned short rate,

 in boolean interrupt,

 in float[] sensorValues);

 };

};

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 217 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

APIs: The discovery module

Webinos API Specifications

30 Jun 2011

Authors

 Anders Isberg <anders.isberg@sonyericsson.com>

© 2011 webinos consortium, www.webinos.org.

Abstract

Webinos Discovery API

Summary of Methods

Interface Method

DiscoveryInterface

PendingOperation findServices(ServiceType serviceType, FindCallBack findCallBack,

Options options, Filter filter)

DOMString getServiceId(DOMString serviceType)

Service createService()

ServiceType

FindCallBack

void onFound(Service service)

void onLost(Service service)

void onError(DiscoveryError error)

Service
PendingOperation bind(BindCallBack bindCallBack, DOMString serviceId)

void unbind()

BindCallBack

void onBind(Service service)

void onUnbind(Service service)

void onServiceAvailable(Service service)

void onServiceUnavailable(Service service)

void onError(DiscoveryError error)

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 218 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Interface Method

Options

Filter

ServiceLocation

PendingOperation void cancel()

DiscoveryError

WebinosDiscovery

1. Introduction

The Webinos Discovery API provide web applications with an API to discover services without

any previous knowledge of the service. The Discovery API is not limited to discovery of local

services but also enables discovery of remote services.

The API enables discovery of services that is exposed either:

1. in the device

2. by entities directly connected to the device,

3. by entities available on the same local IP network

4. by trusted services registered in a personal zone.

Once a service is found the API will provide a service object that is used to bind to a service and

monitor the availability of the service. The binding to a service will make sure that the user is

authorized to use the service, create an implementation of the API and establish a

communication path to the remote peer providing the service. The service object hides the

complexity of communicating over different bearers, do cross network addressing, traversing

NAT/Firewalls and connection management.

Prerequisites for the Discovery API is that the web application using the API is installed, trusted

and that the user of of the device is authenticated and authorized to use the API.

2. Interfaces

2.1. DiscoveryInterface

The DiscoveryInterface interface provides functionality for discovery of services. The API

supports the possibility to discover services based on a given service type either in a personal

zone of trusted services or via other legacy discovery methods such as Bluetooth SD, DNS SD,

mDNS or UPnP. When searching for a service type the operation can be restricted by providing

certain constraints and/or context information via a filter interface.

 [NoInterfaceObject] interface DiscoveryInterface {

 PendingOperation findServices(

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 219 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 in ServiceType serviceType,

 in FindCallBack findCallBack,

 in optional Options options,

 in optional Filter filter)

 raises(DiscoveryExceptions);

 DOMString getServiceId(in DOMString serviceType)

 raises(DiscoveryExceptions);

 Service createService()

 raises(DiscoveryExceptions);

 };

The code example below shows how an application initiates a search query to find a geolocation

service. Whenever a service is found, a new HTML selection item is added to an HTML option

list. Once the user selects a service, the usage of the service is authorized and an implementation

of the API is instantiated by binding to the service.

Code example
 var findHandle = 0;

 var serviceHandle = 0;

 var geoServices = {};

 var serviceId;

 // Callback that displays a list of found services in a HTML selection list

 // The selection list is dynamically extended every time a new service is

discovered.

 function serviceFoundCB(service) {

 var selectlist = document.getElementById('servicelist');

 var option = document.createElement('option');

 option.value = service.id;

 option.id = service.id;

 option.appendChild(document.createTextNode(service.displayName));

 geoServices[service.id] = service;

 selectlist.appendChild(option);

 }

 // Callback that removes a service from the selection list of found services,

 // when the service is not available any longer.

 function serviceLostCB(service) {

 var option = document.getElementById(service.id);

 geoServices[service.id] = NULL;

 option.parentNode.removeChild(option);

 }

 // Success callback when bind has been successfully executed on the service

object.

 function bindCB(myLocationService) {

 alert('Service ' + myLocationService.displayName + ' ready to use');

 myLocationService.navigator.geolocation.getCurrentPosition(showMap);

 }

 // Event listner that is called when the 'change' event is dispatched on the

HTML selection list.

 function serviceSelected(service) {

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 220 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 // Stops the findServices operation

 findHandle.cancel();

 // Binds to the service to initiate an authorized object used to

 // invoke services.

 serviceHandle = service.bind({onBind:bindCB});

 }

 if (serviceId) {

 // If serviceId is known, bind to the service directly. Assumes

 // that serviceId is stored persistently or received via an out

 // of band channel.

 serviceHandle =

window.webinos.discovery.createService().bind({onBind:bindCB}, serviceId);

 }

 else {

 // Initiate a search query for a service of the type geolocation

 findHandle = window.webinos.discovery.findServices(

 {api:'http://www.w3.org/ns/api-perms/geolocation'},

 {onFound:serviceFoundCB, onLost:serviceLostCB});

 var selectlist = document.getElementById('servicelist');

 selectlist.addEventListener("change", function (e) {

 var service = geoServices[e.target.value];

 if (service) {

 serviceSelected(service);

 }

 }, false);

 }

Methods
findServices

The findServices method initiates an asynchronous search query for services matching

the requested serviceType and filter parameter. The method continues to search for

services until the findServices method is canceled by the application or when the

maximum search timer expires. The zones in which services are to be searched are

expected to be managed by the Webinos runtime engine (rather than the application

developer). Below is an example on how this zone management can be presented by a

runtime engine.

Signature

PendingOperation findServices(in ServiceType serviceType, in

FindCallBack findCallBack, in optional Options options, in optional

Filter filter);

Infobar offering to add new personal zones

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 221 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

This infobar would lead to a personal zones management UI:

Personal zone management UI

Parameters

 serviceType

o Optional: No.

o Nullable: No

o Type: ServiceType

o Description: An input argument that defines which type of API that is
requested. The serviceType is an URI that uniquely identifies the API.

 findCallBack

o Optional: No.

o Nullable: No

o Type: FindCallBack

o Description: Callback interface used to report the outcome of the search
process.

 options

o Optional: Yes.

o Nullable: No

o Type: Options

o Description: Defines search options.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 222 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 filter

o Optional: Yes.

o Nullable: No

o Type: Filter

o Description: Defines a filter that be used to limit the service operation to certain
constraints and context information.

Exceptions

 DiscoveryExceptions:

getServiceId

The getServiceId method generates a service identity that can be shared with other peers

to establish a binding without invoking a findServices operation. If no matching API is

found the method will return Null.

Signature

DOMString getServiceId(in DOMString serviceType);

Parameters

 serviceType

o Optional: No.

o Nullable: No

o Type: DOMString

o Description: URI identifying which type of API that shall be exposed. The URI
shall be must be declared in the manifest in the api-name attribute of the
webinos:shared-api element.

Exceptions

 DiscoveryExceptions:

createService

The createService method creates an instance of a Service object that can be used to

establish a service binding directly if the service identity is already known. This is for

example applicable if the service identity is stored persistently in a database or received

via some kind of out of band channel.

Signature

Service createService();

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 223 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Exceptions

 DiscoveryExceptions:

2.2. ServiceType

The Service Type interface is used to define which type of service that is requested.

 [NoInterfaceObject] interface ServiceType {

 attribute DOMString api;

 };

Attributes
DOMString api

URI used to identify which type of API that is requested. The URI could either be:

1. W3C DAP API URI as defined in http://www.w3.org/TR/2010/WD-api-perms-

20101005/, for example http://www.w3.org/ns/api-perms/geolocation,

2. Webinos Feature URI that is defined for each API by Webinos, for example

http://webinos.org/api/sensors.temperature,

3. WAC Feature URI that is defined for each API by WAC, for example

http://waclists.org/api/camera,

4. an unique URI identifying an API exposed by a web application. The URI shall be the

same URI as exposed by the web application manifest in the api-name attribute of the

webinos:shared-api element.

2.3. FindCallBack

FindCallBack interface definition

 [Callback, NoInterfaceObject] interface FindCallBack {

 void onFound(in Service service);

 void onLost(in Service service);

 void onError(in DiscoveryError error);

 };

Methods
onFound

Asynchronous callback used whenever a new service is found.

Signature

void onFound(in Service service);

Parameters

 service

o Optional: No.

o Nullable: No

o Type: Service

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 224 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

o Description: An input argument representing the found service.

onLost

Asynchronous callback used whenever the state of a service change from available to

unavailable.

Signature

void onLost(in Service service);

Parameters

 service

o Optional: No.

o Nullable: No

o Type: Service

o Description: An input argument representing the lost service.

onError

Asynchronous error callback.

Signature

void onError(in DiscoveryError error);

Parameters

 error

o Optional: No.

o Nullable: No

o Type: DiscoveryError

o Description: Error code.

2.4. Service

The Service interface provides an API to bind to a specific service and monitor the availability of

a bound service in an asynchronous manner. The process of binding to a service involves:

1. mutual authentication between the service and the personal zone

2. in case of cross zone personal interworking, mutual authentication between the zones

3. agreement on data handling obligations as set out in the service's privacy policy

4. verifying access privileges and checks the need for elevated privileges

5. instantiate an implementation of the API that can be used by applications to request services

from the requested API.

Once the service object is instantiated, the service object will act as a proxy to the remote peer

that will be able to invoke methods associated with API type under the window object of the

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 225 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

remote peer. For example an application that successfully binds to a "http://webinos.org/api/tv"

API will be able to invoke methods from the remote peer as described in the code example

below.

 [NoInterfaceObject] interface Service {

 const unsigned short SERVICE_INITATING = 0;

 const unsigned short SERVICE_AVAILABLE = 1;

 const unsigned short SERVICE_UNAVAILABLE = 2;

 readonly attribute unsigned short state;

 readonly attribute DOMString api;

 readonly attribute DOMString id;

 readonly attribute DOMString displayName;

 readonly attribute DOMString description;

 readonly attribute DOMString icon;

 PendingOperation bind(in BindCallBack bindCallBack, in optional

DOMString serviceId)

 raises(DiscoveryExceptions);

 void unbind()

 raises(DiscoveryExceptions);

 };

Code example
 succesBindCallBack(tvService) {

 // Invoke a remote method.

 tvService.webinos.tv.display.setChannel(channel, success);

 // Register an event listner from event orginating from the remote

peer.

 tvService.addEventListener('channelchange', success);

 }

Constants

unsigned short SERVICE_INITATING

A constant describing the service is in the process of binding to the service.

unsigned short SERVICE_AVAILABLE

A constant describing the service is available and is ready to be used by the application.

unsigned short SERVICE_UNAVAILABLE

A constant describing the service is unavailable.

Attributes
readonly unsigned short state

Current service state.

This attribute is readonly.

readonly DOMString api

API is a global unique URI identifying the type of API provided by the service.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 226 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

This attribute is readonly.

readonly DOMString id

Id is a globally unique id representing the binding to the service. The id can be used to

resume the binding again to the service without invoking the findServices process again.

The id can be stored persistently to be able to resume a binding to a service across power

cycles.

This attribute is readonly.

readonly DOMString displayName

A human readable name of the service.

This attribute is readonly.

readonly DOMString description

An URL referring to a detailed description of the service.

This attribute is readonly.

readonly DOMString icon

Icon is an URL referring to an icon that represents the service.

This attribute is readonly.

Methods
bind

bind Binds to the service uniquely identified by the service identity.

Signature

PendingOperation bind(in BindCallBack bindCallBack, in optional

DOMString serviceId);

Parameters

 bindCallBack

o Optional: No.

o Nullable: No

o Type: BindCallBack

o Description: Asynchrounous callback to report the states of the bind operation
and the availability of the service.

 serviceId

o Optional: Yes.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 227 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

o Nullable: No

o Type: DOMString

o Description: Unique id of the binding to the particular service. If no serviceId is
provided as an in parameter, the id attribute in the Service interface will be
used to bind the service.

Exceptions

 DiscoveryExceptions:

unbind

unbind Releases all resources and connections allocated by the service object.

Signature

void unbind();

Exceptions

 DiscoveryExceptions:

2.5. BindCallBack

Bind success callback interface definition

 [Callback, NoInterfaceObject] interface BindCallBack {

 void onBind(in Service service);

 void onUnbind(in Service service);

 void onServiceAvailable(in Service service);

 void onServiceUnavailable(in Service service);

 void onError(in DiscoveryError error);

 };

Methods
onBind

Asynchronous success callback.

Signature

void onBind(in Service service);

Parameters

 service

o Optional: No.

o Nullable: No

o Type: Service

o Description: An input argument representing the service.

onUnbind

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 228 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Asynchronous callback used when a service is unbound.

Signature

void onUnbind(in Service service);

Parameters

 service

o Optional: No.

o Nullable: No

o Type: Service

o Description: An input argument representing the service.

onServiceAvailable

Asynchronous callback indicating that the service is available again.

Signature

void onServiceAvailable(in Service service);

Parameters

 service

o Optional: No.

o Nullable: No

o Type: Service

o Description: An input argument representing the service.

onServiceUnavailable

Asynchronous callback indicating the service is temporarily unavailable.

Signature

void onServiceUnavailable(in Service service);

Parameters

 service

o Optional: No.

o Nullable: No

o Type: Service

o Description: An input argument representing the service.

onError

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 229 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Asynchronous error callback.

Signature

void onError(in DiscoveryError error);

Parameters

 error

o Optional: No.

o Nullable: No

o Type: DiscoveryError

o Description: Error code.

2.6. Options

Option interface definition

 [NoInterfaceObject] interface Options {

 attribute unsigned short timeout;

 };

Attributes
unsigned short timeout

A timeout value for the findService operation in seconds between 0-65535. Default value

is 120 seconds. It is possible to disable the timeout by setting the timeout value to

Number.POSITIVE_INFINITY.

2.7. Filter

Filter interface

 [NoInterfaceObject] interface Filter {

 attribute DOMString[] zoneId;

 attribute boolean remoteServices;

 attribute ServiceLocation? serviceLocation;

 };

Attributes
DOMString [] zoneId

Identities of personal zones that will be used to search for services in addition to the

person zone of the user logged into to the device and all personal zones that has been

defined via the personal zone management UI.

boolean remoteServices

If remoteService is false the findServices method will limit the search for services that

are connected directly to the device or to the same local IP network. If remoteServices is

true, the findServices method will extend the search for services outside the local IP

network. Default value is false.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 230 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

ServiceLocation? serviceLocation

With the serviceLocation attribute it is possible to indicate where the service shall be

located. If the service location is Null, the location of the service is not considered during

the findServices process.

2.8. ServiceLocation

ServiceLocation interface

 [NoInterfaceObject] interface ServiceLocation {

 attribute double? latitude;

 attribute double? longitude;

 attribute double accuracy;

 };

Attributes
double? latitude

The latitude attribute is the geographic coordinate specified in decimal degrees. If the

latitude is Null the latitude of the device invoking the findServices method will be used.

double? longitude

The longitude attribute is the geographic coordinate specified in decimal degrees. If the

longitude is Null the longitude of the device invoking the findServices method will be

used.

double accuracy

The accuracy denotes the accuracy level of the latitude and longitude coordinates in

meters. This is used to limit the geographical area for finding services.

2.9. PendingOperation

Pending Operation interface

 [NoInterfaceObject] interface PendingOperation {

 void cancel();

 };

Methods
cancel

Cancels the pending asynchronous operation and allocated resources are released.

Signature

void cancel();

2.10. DiscoveryError

Discovery specific errors.

 [NoInterfaceObject] interface DiscoveryError {

 const unsigned short FIND_SERVICE_CANCELED = 101;

 const unsigned short FIND_SERVICE_TIMEOUT = 102;

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 231 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 const unsigned short PERMISSION_DENIED_ERROR = 103;

 readonly attribute unsigned short code;

 readonly attribute DOMString message;

 };

Constants

unsigned short FIND_SERVICE_CANCELED

The discovery process was canceled by the application

unsigned short FIND_SERVICE_TIMEOUT

The discovery process was canceled since the timeout timer expired.

unsigned short PERMISSION_DENIED_ERROR

Not Authorized to use the service.

Attributes
readonly unsigned short code

Error code assigned when an error has occurred in during the discovery process.

This attribute is readonly.

readonly DOMString message

Human readable message assigned when an error has occurred the discovery process.

This attribute is readonly.

2.11. WebinosDiscovery

The WebinosDiscovery interface describes the part of the Discovery API accessible through the

webinos object.

 [NoInterfaceObject] interface WebinosDiscovery {

 readonly attribute DiscoveryInterface discovery;

 };

 webinoscore::Webinos implements WebinosDiscovery;

Attributes
readonly DiscoveryInterface discovery

webinos.discovery object.

This attribute is readonly.

3. Exceptions

3.1. DiscoveryExceptions

Discovery specific exceptions.

 exception DiscoveryExceptions {

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 232 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 const unsigned short INVALID_ARGUMENT_ERROR = 101;

 unsigned short code;

 DOMString message;

 };

Field
unsigned short code

Exception code.

DOMString message

Human readable exception message.

4. Features

This is the list of URIs used to declare this API's features, for use in the widget config.xml and as

identifier for service type in service discovery functionality. For each URI, the list of functions

covered is provided.

http://webinos.org/api/discovery

5. Full WebIDL
module discovery {

 [NoInterfaceObject] interface DiscoveryInterface {

 PendingOperation findServices(

 in ServiceType serviceType,

 in FindCallBack findCallBack,

 in optional Options options,

 in optional Filter filter)

 raises(DiscoveryExceptions);

 DOMString getServiceId(in DOMString serviceType)

 raises(DiscoveryExceptions);

 Service createService()

 raises(DiscoveryExceptions);

 };

 [NoInterfaceObject] interface ServiceType {

 attribute DOMString api;

 };

 [Callback, NoInterfaceObject] interface FindCallBack {

 void onFound(in Service service);

 void onLost(in Service service);

 void onError(in DiscoveryError error);

 };

 [NoInterfaceObject] interface Service {

 const unsigned short SERVICE_INITATING = 0;

 const unsigned short SERVICE_AVAILABLE = 1;

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 233 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 const unsigned short SERVICE_UNAVAILABLE = 2;

 readonly attribute unsigned short state;

 readonly attribute DOMString api;

 readonly attribute DOMString id;

 readonly attribute DOMString displayName;

 readonly attribute DOMString description;

 readonly attribute DOMString icon;

 PendingOperation bind(in BindCallBack bindCallBack, in optional

DOMString serviceId)

 raises(DiscoveryExceptions);

 void unbind()

 raises(DiscoveryExceptions);

 };

 [Callback, NoInterfaceObject] interface BindCallBack {

 void onBind(in Service service);

 void onUnbind(in Service service);

 void onServiceAvailable(in Service service);

 void onServiceUnavailable(in Service service);

 void onError(in DiscoveryError error);

 };

 [NoInterfaceObject] interface Options {

 attribute unsigned short timeout;

 };

 [NoInterfaceObject] interface Filter {

 attribute DOMString[] zoneId;

 attribute boolean remoteServices;

 attribute ServiceLocation? serviceLocation;

 };

 [NoInterfaceObject] interface ServiceLocation {

 attribute double? latitude;

 attribute double? longitude;

 attribute double accuracy;

 };

 [NoInterfaceObject] interface PendingOperation {

 void cancel();

 };

 [NoInterfaceObject] interface DiscoveryError {

 const unsigned short FIND_SERVICE_CANCELED = 101;

 const unsigned short FIND_SERVICE_TIMEOUT = 102;

 const unsigned short PERMISSION_DENIED_ERROR = 103;

 readonly attribute unsigned short code;

 readonly attribute DOMString message;

 };

 exception DiscoveryExceptions {

 const unsigned short INVALID_ARGUMENT_ERROR = 101;

 unsigned short code;

 DOMString message;

 };

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 234 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 [NoInterfaceObject] interface WebinosDiscovery {

 readonly attribute DiscoveryInterface discovery;

 };

 webinoscore::Webinos implements WebinosDiscovery;

};

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 235 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

APIs: The tv module

Webinos API Specifications

1 Jul 2011

Authors

 Fraunhofer FOKUS, Alexander Futász <alexander.futasz@fokus.fraunhofer.de>

 Dominique Hazael-Massieux

© 2011 webinos consortium, www.webinos.org.

Abstract

Interface for TV control and managment.

Summary of Methods

Interface Method

WebinosTV

TVManager

TVDisplayManager
void setChannel(Channel channel, TVDisplaySuccessCB successCallback, TVErrorCB

errorCallback)

TVDisplaySuccessCB void onSuccess(Channel channel)

TVTunerManager void getTVSources(TVSuccessCB successCallback, TVErrorCB errorCallback)

TVSuccessCB void onSuccess(TVSource [] sources)

TVErrorCB void onError(TVError error)

TVError

TVSource

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 236 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Interface Method

Channel

ChannelChangeEvent
void initChannelChangeEvent(DOMString type, boolean bubbles, boolean

cancelable, Channel channel)

1. Introduction

The interface provides means to acquire a list of tv sources, channels and their streams.

The TV channel streams can be displayed in HTMLVideoElement object

(http://dev.w3.org/html5/spec/video.html). Alternatively the API provides means to control

channel management of the native hardware TV, by allowing to set a channel or watch for

channel changes that are invoked otherwise.

The tv object is made available under the webinos namespace, i.e. webinos.tv.

2. Interfaces

2.1. WebinosTV

Creates tv object.

[NoInterfaceObject]

interface WebinosTV {

 readonly attribute TVManager tv;

};

webinoscore::Webinos implements WebinosTV;

2.2. TVManager

Access to tuner and display managers.

[NoInterfaceObject]

interface TVManager {

 readonly attribute TVDisplayManager display;

 readonly attribute TVTunerManager tuner;

};

2.3. TVDisplayManager

Interface to manage what's currently displayed on TV screen.

[NoInterfaceObject]

interface TVDisplayManager {

 void setChannel(Channel channel, TVDisplaySuccessCB successCallback, optional

TVErrorCB errorCallback);

};

This interface is useful when an app doesn't want to show the broadcast itself, but let the TV

natively handle playback, i.e. not in a web context. Useful to build an control interface that

allows channel switching.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 237 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Code example
 <p>Currently shown on TV: Undetermined</p>

 <script>

 var channel; // holding a previously obtained channel object.

 webinos.tv.display.setChannel(channel, success);

 var ontv = document.getElementById('tv');

 function success(channel) {

 ontv.normalize();

 ontv.removeChild(ontv.childNodes[0]);

 ontv.appendChild(document.createTextNode(channel.name + ' (source: ' +

channel.tvsource.name + ')'));

 }

 </script>

Methods
setChannel

Switches the channel natively on the TV (same as when a hardware remote control would

be used).

Signature

void setChannel(Channel channel, TVDisplaySuccessCB successCallback,

optional TVErrorCB errorCallback);

Parameters

 channel

o Optional: No.

o Nullable: No

o Type: Channel

o Description: The TV channel to switch to.

 successCallback

o Optional: No.

o Nullable: No

o Type: TVDisplaySuccessCB

o Description: The callback to notify the caller that the channel change
succeeded.

 errorCallback

o Optional: Yes.

o Nullable: No

o Type: TVErrorCB

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 238 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

o Description: The callback called in case the channel could not be switched and
an error occured.

2.4. TVDisplaySuccessCB

Callback function when current channel changed successfully.

[Callback=FunctionOnly, NoInterfaceObject]

interface TVDisplaySuccessCB {

 void onSuccess(Channel channel);

};

2.5. TVTunerManager

Get a list of all available TV tuners.

[NoInterfaceObject]

interface TVTunerManager {

 void getTVSources(TVSuccessCB successCallback, optional TVErrorCB errorCallback);

};

Code example
 <label>Pick a TV Source: <select id='source'>

 <option>None</option>

 </select></label>

 <label>Pick a channel: <select id='channel'>

 <option>None</option>

 </select></label>

 <video id='display' width='640' height='400' poster='nochannel.png'></video>

 <script>

 webinos.tv.tuner.getTVSources(successCB);

 var tvsourceselector = document.getElementById('source');

 var channelselector = document.getElementById('channel');

 var v = document.getElementById('display');

 var currentTVSource;

 var tvsources = [];

 function successCB(sources) {

 tvsources = sources;

 for (var i in sources) {

 var o = document.createElement('option');

 o.value = i;

 o.appendChild(document.createTextNode(sources[i].name);

 tvsourceselector.appendChild(o);

 }

 }

 tvsourceselector.addEventListener('change', function (e) {

 currentTVSource = tvsources[e.target.value];

 // start showing first channel

 if (currentTVSource.channelList.length) {

 v.src = currentTVSource.channelList[0].stream;

 for (var i in currentTVSource.channelList) {

 var channel = currentTVSource.channelList[i];

 var o = document.createElement('option');

 o.appendChild(document.createTextNode(channel.name);

 o.value = i;

 channelselector.appendChild(o);

 }

 }, false);

 channelselector.addEventListener('change', function (e) {

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 239 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 if (e.target.value) {

 v.src = currentTVSource.channelList[e.target.value].stream;

 }

 }, false);

 </script>

Methods
getTVSources

Get a list of all available TV tuners.

Signature

void getTVSources(TVSuccessCB successCallback, optional TVErrorCB

errorCallback);

Parameters

 successCallback

o Optional: No.

o Nullable: No

o Type: TVSuccessCB

o Description: Callback that receives all available TV sources.

 errorCallback

o Optional: Yes.

o Nullable: No

o Type: TVErrorCB

o Description: Callback called in case something goes wrong.

2.6. TVSuccessCB

Callback for found TV tuners.

[Callback=FunctionOnly, NoInterfaceObject]

interface TVSuccessCB {

 void onSuccess(TVSource[] sources);

};

Methods
onSuccess

Callback that is called with the found TV sources.

Signature

void onSuccess(

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 240 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 TVSource

 [] sources);

Parameters

 sources

o Optional: No.

o Nullable: No

o Type: array

o Description: An array of TVSource objects representing available tuners.

2.7. TVErrorCB

Error callback for errors when trying to get TV tuners.

[Callback=FunctionOnly, NoInterfaceObject]

interface TVErrorCB {

 void onError(TVError error);

};

Methods
onError

Callback that is called when an error occures while getting TV sources

Signature

void onError(TVError error);

Parameters

 error

o Optional: No.

o Nullable: No

o Type: TVError

o Description: Error object detailing what went wrong.

2.8. TVError

Error codes.

[NoInterfaceObject]

interface TVError {

 const unsigned short UNKNOWN_ERROR = 0;

 const unsigned short ILLEGAL_CHANNEL_ERROR = 1;

 readonly attribute unsigned short code;

};

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 241 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Constants

unsigned short UNKNOWN_ERROR

An unknown error.

unsigned short ILLEGAL_CHANNEL_ERROR

Invalid input channel.

Attributes
readonly unsigned short code

Code.

This attribute is readonly.

2.9. TVSource

TV source: a list of channels with a name.

[NoInterfaceObject]

interface TVSource {

 readonly attribute DOMString name;

 readonly attribute Channel[] channelList;

};

Attributes
readonly DOMString name

The name of the source.

The name should describe the kind of tuner this source represents, e.g. DVB-T, DVB-C.

This attribute is readonly.

readonly Channel [] channelList

List of channels for this source.

This attribute is readonly.

2.10. Channel

The Channel Interface

[NoInterfaceObject]

interface Channel {

 const unsigned short TYPE_TV = 0;

 const unsigned short TYPE_RADIO = 1;

 readonly attribute unsigned short channelType;

 readonly attribute DOMString name;

 readonly attribute DOMString longName;

 readonly attribute Stream stream;

 readonly attribute TVSource tvsource;

};

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 242 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Channel objects provide access to the video stream.

Constants

unsigned short TYPE_TV

Indicates a TV channel.

unsigned short TYPE_RADIO

Indicates a radio channel.

Attributes
readonly unsigned short channelType

The type of channel.

Type of channel is defined by one of the TYPE_* constants defined above.

This attribute is readonly.

readonly DOMString name

The name of the channel.

The name of the channel will typically be the call sign of the station.

This attribute is readonly.

readonly DOMString longName

The long name of the channel.

The long name of the channel if transmitted. Can be undefined if not available.

This attribute is readonly.

readonly Stream stream

The video stream.

This stream is a represents a valid source for a HTMLVideoElement.

This attribute is readonly.

readonly TVSource tvsource

The source this channels belongs too.

This attribute is readonly.

2.11. ChannelChangeEvent

Event that fires when the channel is changed.

interface ChannelChangeEvent : Event {

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 243 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 readonly attribute Channel channel;

 void initChannelChangeEvent(DOMString type, boolean bubbles, boolean cancelable,

Channel channel);

};

Changing channels could also be invoked by other parties, e.g. a hardware remote control. A

ChannelChange event will be fire in these cases which provides the channel that was switched

to.

Code example
 <p>Currently shown on TV: Undetermined</p>

 <script>

 window.addEventListener('channelchange', success);

 var ontv = document.getElementById('tv');

 function success(channel) {

 ontv.normalize();

 ontv.removeChild(ontv.childNodes[0]);

 ontv.appendChild(document.createTextNode(channel.name + ' (source: ' +

channel.tvsource.name + ')'));

 }

 </script>

Attributes
readonly Channel channel

The new channel.

This attribute is readonly.

Methods
initChannelChangeEvent

Initializes a new channel change event.

Signature

void initChannelChangeEvent(DOMString type, boolean bubbles, boolean

cancelable, Channel channel);

Parameters

 type

o Optional: No.

o Nullable: No

o Type: DOMString

o Description: The type of event. Pass 'channelchange'.

 bubbles

o Optional: No.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 244 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

o Nullable: No

o Type: boolean

o Description: Indicates whether the event bubbles.

 cancelable

o Optional: No.

o Nullable: No

o Type: boolean

o Description: Indicates whether the event is cancelable.

 channel

o Optional: No.

o Nullable: No

o Type: Channel

o Description: The channel that was changed to.

3. Features

This is the list of URIs used to declare this API's features, for use in the widget config.xml and as

identifier for service type in service discovery functionality. For each URI, the list of functions

covered is provided.

http://webinos.org/api/tv

4. Full WebIDL
module tv {

[NoInterfaceObject]

interface WebinosTV {

 readonly attribute TVManager tv;

};

webinoscore::Webinos implements WebinosTV;

[NoInterfaceObject]

interface TVManager {

 readonly attribute TVDisplayManager display;

 readonly attribute TVTunerManager tuner;

};

[NoInterfaceObject]

interface TVDisplayManager {

 void setChannel(Channel channel, TVDisplaySuccessCB successCallback, optional

TVErrorCB errorCallback);

};

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 245 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

[Callback=FunctionOnly, NoInterfaceObject]

interface TVDisplaySuccessCB {

 void onSuccess(Channel channel);

};

[NoInterfaceObject]

interface TVTunerManager {

 void getTVSources(TVSuccessCB successCallback, optional TVErrorCB errorCallback);

};

[Callback=FunctionOnly, NoInterfaceObject]

interface TVSuccessCB {

 void onSuccess(TVSource[] sources);

};

[Callback=FunctionOnly, NoInterfaceObject]

interface TVErrorCB {

 void onError(TVError error);

};

[NoInterfaceObject]

interface TVError {

 const unsigned short UNKNOWN_ERROR = 0;

 const unsigned short ILLEGAL_CHANNEL_ERROR = 1;

 readonly attribute unsigned short code;

};

[NoInterfaceObject]

interface TVSource {

 readonly attribute DOMString name;

 readonly attribute Channel[] channelList;

};

[NoInterfaceObject]

interface Channel {

 const unsigned short TYPE_TV = 0;

 const unsigned short TYPE_RADIO = 1;

 readonly attribute unsigned short channelType;

 readonly attribute DOMString name;

 readonly attribute DOMString longName;

 readonly attribute Stream stream;

 readonly attribute TVSource tvsource;

};

interface ChannelChangeEvent : Event {

 readonly attribute Channel channel;

 void initChannelChangeEvent(DOMString type, boolean bubbles, boolean cancelable,

Channel channel);

};

};

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 246 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

APIs: The userprofile module

Webinos API Specifications

28 Jun 2011

Authors

 WIDL version for webinos created by Ronny Gräfe <ronny.graefe@t-systems.com>

© 2011 webinos consortium, www.webinos.org.

Abstract

The webinos userprofile API to access user information.

Summary of Methods

Interface Method

UserProfileInterface

void find(DOMString [] fields, UserProfileFindCB successCB, UserProfileErrorCB

errorCB, UserProfileFindOptions options)

void createUserProfile(UserProfile userProfile, SuccessCB successCallBack,

UserProfileErrorCB errorCallback)

void replaceUserProfile(DOMString id, UserProfile userProfile, SuccessCB

successCallBack, UserProfileErrorCB errorCallback)

void deleteUserProfile(DOMString id, SuccessCB successCallBack,

UserProfileErrorCB errorCallback)

UserProfile

SocialNetworkProfile

UserProfileFindOptions

UserProfileError

UserProfileErrorCB void onerror(UserProfileError error)

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 247 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Interface Method

UserProfileFindCB void onsuccess(UserProfile [] userProfileObjs)

WebinosUserProfile

1. Introduction

This API offers access to information of the user. UserProfile API is an extension of webinos

Contact API to gather basic information about the user (e.g. name, nickname, gender, birthday,

etc.) and extends it with social network attributes from Portablecontacts from August 5, 2008

(http://portablecontacts.net/draft-spec.html). These social network attributes are a simple pointer

where the webinos user has non-webinos profiles. These information could be used by an

application to query an external API for an additional information (e.g. query the Facebook

Graph API for the buddylist).

2. Interfaces

2.1. UserProfileInterface

The UserProfileInterface interface provides methods to find, create, replace and delete a

userprofile. There could be several userprofiles assigned to one sepcific webinos user.

 interface UserProfileInterface {

 caller void find(DOMString[] fields, UserProfileFindCB successCB,

optional UserProfileErrorCB errorCB, optional UserProfileFindOptions options);

 void createUserProfile(in UserProfile userProfile, optional SuccessCB

successCallBack, in UserProfileErrorCB errorCallback);

 void replaceUserProfile(in DOMString id, in UserProfile userProfile,

optional SuccessCB successCallBack, in UserProfileErrorCB errorCallback);

 void deleteUserProfile(in DOMString id, optional SuccessCB

successCallBack, in UserProfileErrorCB errorCallback);

 };

Methods
find

find() method

Signature

caller void find(

 DOMString

 [] fields, UserProfileFindCB successCB, optional

UserProfileErrorCB errorCB, optional UserProfileFindOptions options);

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 248 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Find a userprofile in the webinos system according to the find user process detailed

below.

This method takes two, three or four arguments. When called, it starts the following find

userprofile process:

1. Let successCallback be the callback indicated by the method's second argument.

2. Let errorCallback be the callback indicated by the method's third argument, if any, or

null otherwise.

3. If successCallback is null, then throw a TypeError (as defined in the WEBIDL

Sepcification - http://dev.w3.org/2006/webapi/WebIDL/).

4. If there is a task from the device task source in one of the task queues (e.g. an existing

find() operation is still pending a response), run these substeps:

4.1 If errorCallback is not null, let error be a UserProfileError object whose code attribute

has the value PENDING_OPERATION_ERROR and queue a task to invoke

errorCallback with error as its argument.

4.2 Abort this operation.

5. Return, and run the remaining steps asynchronously.

6. Let results be the array of UserPofile objects obtained by searching userprofiles in the

webinos system according to the rules defined in UserProfile Search Processing, or null if

the search has failed.

7. If results is null, run these substeps:

7.1 If errorCallback is not null, let error be a UserProfileError object whose code attribute

has its value set according to the type of failure that occurred and queue a task to invoke

errorCallback with error as its argument.

7.2 Abort this operation.

8. Queue a task to invoke successCallback with results as its argument.

Parameters

 fields

o Optional: No.

o Nullable: No

o Type: array

o Description:

 successCB

o Optional: No.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 249 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

o Nullable: No

o Type: UserProfileFindCB

o Description:

 errorCB

o Optional: Yes.

o Nullable: No

o Type: UserProfileErrorCB

o Description:

 options

o Optional: Yes.

o Nullable: No

o Type: UserProfileFindOptions

o Description:

createUserProfile

createuserProfile() method - Creates a new user profile in the webinos system.

Signature

void createUserProfile(in UserProfile userProfile, optional SuccessCB

successCallBack, in UserProfileErrorCB errorCallback);

Parameters

 userProfile

o Optional: No.

o Nullable: No

o Type: UserProfile

o Description: A new UserProfile object.

 successCallBack

o Optional: Yes.

o Nullable: No

o Type: SuccessCB

o Description: Callback issued when the creating of the user is correctly finished.

 errorCallback

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 250 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

o Optional: No.

o Nullable: No

o Type: UserProfileErrorCB

o Description: Callback issued if an error occurs during the processing time.

Code example
 //create a new userProfile

 var userProfile = new Object();

 //add attributes

 userProfile.displayName = 'John Smith';

 userProfile.nickname = 'johnny2011';

 ...

 userProfile.timezone = 'CET';

 //creates a new userprofile in the webinos system

 webinos.userprofile.createuserProfile(userProfile, successCB, errorCB);

replaceUserProfile

The replaceUserProfile() method - Replaces a userprofile. This method should be used to

update a userprofile.

Signature

void replaceUserProfile(in DOMString id, in UserProfile userProfile,

optional SuccessCB successCallBack, in UserProfileErrorCB

errorCallback);

Three steps are necessary to use this method.

1. Get the existing user profile object

2. Update attributes

3. Use replaceUserProfile() method to update the existing user profile with new attributes

by providing the entire user profile object to the method.

Parameters

 id

o Optional: No.

o Nullable: No

o Type: DOMString

o Description:

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 251 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 userProfile

o Optional: No.

o Nullable: No

o Type: UserProfile

o Description: The UserProfile object which should be replaced in the webinos
system.

 successCallBack

o Optional: Yes.

o Nullable: No

o Type: SuccessCB

o Description: Callback issued when the creating of the user is correctly finished.

 errorCallback

o Optional: No.

o Nullable: No

o Type: UserProfileErrorCB

o Description: Callback issued if an error occurs during the opening. E.g. the
userprofile id does not exist.

Code example
 // Obtain a single existing UserProfile object resulting from

webinos.userprofile.find()

 var existingUserProfileObj = ...;

 // Modify some parameters as required. e.g. add a new phone number

 existingUserProfileObj.phoneNumbers.push({

 type: 'home',

 value: '654321'

 });

 //update the userprofile

 webinos.userprofile.replaceUserProfile(existingUserProfileObj, successCB, errorCB);

deleteUserProfile

The deleteUserProfile() method - Deletes an existing userprofile from the user in the

webinos system.

Signature

void deleteUserProfile(in DOMString id, optional SuccessCB

successCallBack, in UserProfileErrorCB errorCallback);

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 252 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Parameters

 id

o Optional: No.

o Nullable: No

o Type: DOMString

o Description: The id of the existing object

 successCallBack

o Optional: Yes.

o Nullable: No

o Type: SuccessCB

o Description: Callback issued when the creating of the user is correctly finished.

 errorCallback

o Optional: No.

o Nullable: No

o Type: UserProfileErrorCB

o Description: Callback issued if an error occurs during the opening. E.g. the
userprofile id does not exist.

Code example
 //delete the userprofile

 webinos.userprofile.deleteUserProfile('xxx', successCB, errorCB);

2.2. UserProfile

The UserProfile interface. It is a userprofile specific extension to the interface Contact in the

Contacts module.

 interface UserProfile : Contact {

 attribute DOMString? preferredUsername;

 attribute SocialNetworkProfile[]? socialProfiles;

 };

Attributes
DOMString? preferredUsername

preferredUsername of type DOMString

The preferred username of this user on sites that ask for a username (e.g. jsmarr or

daveman692). This field may be useful for describing the owner (i.e. the value when

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 253 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

/@me/@self is requested), e.g. Consumers MAY wish to use this value to pre-populate a

username for this user when signing up for a new service. See [[PORT] section 7.2.1].

SocialNetworkProfile [] socialProfiles

socialProfiles of type array of SocialNetworkProfile

The User profile on a social network provider.

2.3. SocialNetworkProfile

The SocialNetworkProfile interface

 [NoInterfaceObject]

 interface SocialNetworkProfile {

 attribute boolean pref;

 attribute DOMString? socialNetworkProvider;

 attribute DOMString? userId;

 };

Attributes
boolean pref

pref of type boolean

This attribute indicates whether this instance of the SocialNetworkProfile is the preferred,

or primary, value for the user. By default, the value is false.

DOMString? socialNetworkProvider

socialNetworkProvider of type DOMString

The identifier of the social network provider, for the purposes of sorting and filtering.

DOMString? userId

userId of type DOMString

The user's IDs in the social network, that is one or more elements that can be used to

uniquely identify the user (i.e. userName, social network ID number, email). Usually

chosen automatically, and usually numeric but sometimes alphanumeric, e.g. "12345" or

"1Z425A".

2.4. UserProfileFindOptions

The UserProfileFindOptions interface describes the options that can be applied to userprofile

searching. It inherits directly from ContactFindOptions and could be used to declare an filter for

userprofile attributes. When a UserProfileFindOptions parameter is provided to the UserProfile

find() operation, it should be processed according to the provisions detailed in Options

Processing.

 [NoInterfaceObject]

 interface UserProfileFindOptions : ContactFindOptions {

 };

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 254 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

2.5. UserProfileError

The UserProfileError interface. It is a userprofile specific extension to the interface ContactError

in the Contacts module.

 [NoInterfaceObject]

 interface UserProfileError : ContactError {

 const unsigned short USERPROFILE_NOT_EXIST = 101;

 };

Constants

unsigned short USERPROFILE_NOT_EXIST

The userprofile does not exist in the webinos system.

2.6. UserProfileErrorCB

This is the wrapper interface for callbacks indicating failure of the createUserProfile(),

updateUserProfile() and deleteUserProfile() operation.

 [Callback=FunctionOnly, NoInterfaceObject]

 interface UserProfileErrorCB {

 void onerror(UserProfileError error);

 };

Methods
onerror

Callback on failure of a find() operation

Signature

void onerror(UserProfileError error);

Parameters

 error

o Optional: No.

o Nullable: No

o Type: UserProfileError

o Description: The UserProfileError object capturing the type of the error.

Return value

void

2.7. UserProfileFindCB

This is the wrapper interface for callbacks indicating success of the find() operation.

 [Callback=FunctionOnly, NoInterfaceObject]

 interface UserProfileFindCB {

 void onsuccess (UserProfile[] userProfileObjs);

 };

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 255 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Methods
onsuccess

Callback on success of a find() operation

Signature

void onsuccess(

 UserProfile

 [] userProfileObjs);

Parameters

 userProfileObjs

o Optional: No.

o Nullable: No

o Type: array

o Description: An array of UserProfile objects resulting from the given UserProfile
find() operation.

Return value

void

2.8. WebinosUserProfile

The WebinosUserProfile interface describes the part of the user profile API accessible through

the webinos object.

 [NoInterfaceObject] interface WebinosUserProfile {

 readonly attribute UserProfileInterface userprofile;

 };

 webinoscore::Webinos implements WebinosUserProfile;

Attributes
readonly UserProfileInterface userprofile

webinos.userprofile object.

This attribute is readonly.

3. Features

This is the list of URIs used to declare this API's features, for use in the widget config.xml and as

identifier for service type in service discovery functionality. For each URI, the list of functions

covered is provided.

http://webinos.org/api/userprofile

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 256 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

4. Full WebIDL
module userprofile {

 interface UserProfileInterface {

 caller void find(DOMString[] fields, UserProfileFindCB successCB,

optional UserProfileErrorCB errorCB, optional UserProfileFindOptions options);

 void createUserProfile(in UserProfile userProfile, optional SuccessCB

successCallBack, in UserProfileErrorCB errorCallback);

 void replaceUserProfile(in DOMString id, in UserProfile userProfile,

optional SuccessCB successCallBack, in UserProfileErrorCB errorCallback);

 void deleteUserProfile(in DOMString id, optional SuccessCB

successCallBack, in UserProfileErrorCB errorCallback);

 };

 interface UserProfile : Contact {

 attribute DOMString? preferredUsername;

 attribute SocialNetworkProfile[]? socialProfiles;

 };

 [NoInterfaceObject]

 interface SocialNetworkProfile {

 attribute boolean pref;

 attribute DOMString? socialNetworkProvider;

 attribute DOMString? userId;

 };

 [NoInterfaceObject]

 interface UserProfileFindOptions : ContactFindOptions {

 };

 [NoInterfaceObject]

 interface UserProfileError : ContactError {

 const unsigned short USERPROFILE_NOT_EXIST = 101;

 };

 [Callback=FunctionOnly, NoInterfaceObject]

 interface UserProfileErrorCB {

 void onerror(UserProfileError error);

 };

 [Callback=FunctionOnly, NoInterfaceObject]

 interface UserProfileFindCB {

 void onsuccess (UserProfile[] userProfileObjs);

 };

 [NoInterfaceObject] interface WebinosUserProfile {

 readonly attribute UserProfileInterface userprofile;

 };

 webinoscore::Webinos implements WebinosUserProfile;

};

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 257 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

APIs: The vehicle module

Webinos API Specifications

1 Jul 2011

Authors

 Simon Isenberg (BMW Forschung & Technik) <Simon.Isenberg@bmw.de>

© 2011 webinos consortium, www.webinos.org.

Abstract

webinos Vehicle interface.

Summary of Methods

Interface Method

VehicleError

Address

VehicleEvent

LatLng

POI

SuccessCallback void onSuccess()

ErrorCallback void onError(VehicleError error)

VehicleDataHandler void handleVehicleData(VehicleEvent data)

VehicleInterface

void get(DOMString vehicleDataId, VehicleDataHandler handler, ErrorCallback

errorCB)

void requestGuidance(SuccessCallback successCallback, ErrorCallback

errorCallback, POI [] destinations)

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 258 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Interface Method

void findDestination(DestinationCallback destinationCallback, ErrorCallback

errorCallback, DOMString search)

Vehicle

DestinationCallback void handleResults(POI [] pois)

ClimateControlEvent

void initClimateControlEvent(boolean bubbles, boolean cancelable, DOMString

zone, short desiredTemperature, boolean acStatus, short ventLevel, short

ventMode)

ControlEvent
void initControlEvent(boolean bubbles, boolean cancelable, DOMString controlId,

boolean active)

NavigationEvent
void initNavigationEvent(boolean bubbles, boolean cancelable, DOMString

navigationEventId, Address destination)

ParkSensorsEvent
void initParkSensorsEvent(boolean bubbles, boolean cancelable, DOMString

position, short left, short midLeft, short midRight, short right)

ShiftEvent void initShiftEvent(boolean bubbles, boolean cancelable, short gear)

TripComputerEvent

void initTripComputerEvent(boolean bubbles, boolean cancelable, float

averageConsumption1, float averageConsumption2, float averageSpeed1, float

averageSpeed2, float tripDistance, float mileage, float range)

1. Introduction

The webinos vehicle API provides access to specific vehicle data. It is derived from W3C's

DOM Level 3 Events model and defines event types for retrieving information about the vehicle

including trip computer data, gears or park sensors. Furthermore it offers methods for interacting

with the on-board navigation system. The geolocation, speed and acceleration can be retrieved

using the geolocation and device orientation API.

The API gives access to vehicle data, which is available on the infotainment vehicle bus (e.g.

MOST). The infotainment bus is the only access point for the headunit to receveive vehicle data

(diagram on vehicle bus architecture). Some data from other busses (high/low speed CAN) are

routed into the bus over the central gateway such as speed or gear (RPM is currently not

provided on the MOST).

2. Interfaces

2.1. VehicleError

The interface defines the vehicle specific error

http://en.wikipedia.org/wiki/MOST_Bus
http://dev.webinos.org/redmine/attachments/download/666/vehicle_bus_infrastructure.pdf
http://en.wikipedia.org/wiki/Controller_area_network

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 259 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 interface VehicleError : Error{

 const short ACCESS_DENIED = 1;

 const short NOT_AVAILABLE = 2;

 const short UNKNOWN = 0;

 };

Constants

short ACCESS_DENIED

Constant describes that the access to the requested vehicle feature has been denied.

short NOT_AVAILABLE

Constant describes that the requested vehicle feature is not available.

short UNKNOWN

Constant describes that an unkown error occured while requestung a vehicle feature.

2.2. Address

This interface defines the address properties, which can be passed to the navigation system using

the requestGuidance() function. The Address interface defined in the v2 of the W3C Geolocation

API is used for this purpose.

 [NoInterfaceObject]

 interface Address{

 attribute DOMString country;

 attribute DOMString? region;

 attribute DOMString? county;

 attribute DOMString city;

 attribute DOMString street;

 attribute DOMString streetNumber;

 attribute DOMString? premises;

 attribute DOMString additionalInformation;

 attribute DOMString postalCode;

 };

Attributes
DOMString country

Attribute is specified by using the two-letter [ISO 3166-1] code.

DOMString? region

Attribute denotes the name of a country subdivision (e.g. the state name in the US).

DOMString? county

Attribute denotes the name of a land area within a larger region.

DOMString city

Attribute reflects the name of the city.

DOMString street

http://dev.w3.org/geo/api/spec-source-v2.html#address_interface

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 260 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Attribute reflects the name of the street.

DOMString streetNumber

Attribute describes the location's street number.

DOMString? premises

Attribute denotes the details of the premises, such as a building name, block of flats, etc.

DOMString additionalInformation

Attribute contains other address details that are not captured by the rest of the attributes

in this interface. Examples include a floor number in a building, an apartment number,

the name of an office occupant, etc..

DOMString postalCode

Attribute reflects the postal code of the location (e.g. the zip code in the US).

2.3. VehicleEvent

The interface defines a generic event for vehicle data specific events.

 [NoInterfaceObject]

 interface VehicleEvent : Event{

 };

2.4. LatLng

This interface defines the LatLng properties, which can be passed to the navigation system using

the requestGuidance() function. The format is WGS84. Note: The coordinate interface from the

Geolocation API v2 includes attributes, which are not feasible for beeing handled by the

navigation system (accurancy, alitude accurency, heading, speed). In some special cases

(destination is on a bridge, which crosses another street) it might make sense to add the altitude

to LatLng interface at a later stage.

 [NoInterfaceObject]

 interface LatLng{

 attribute double latitude;

 attribute double longitude;

 };

Attributes
double latitude

Attribute reflect the latitude of a geolocation in WGS84.

double longitude

Attribute reflect the Longitude of a geolocation in WGS84.

2.5. POI

This interface defines a Point of Interest (POI). The interface contains the name of a POI and its

address and/or geolocation as a LatLng object. Note: The W3C POI WG has published a first

http://dev.w3.org/geo/api/spec-source-v2.html#coordinates
http://www.w3.org/2010/POI/
http://www.w3.org/TR/2011/WD-poi-core-20110512/

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 261 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

working draft for the POI handling. The draft focuses on a XML representation of a POI and

does not seem handy for beeing handled by a navigation system.

 [NoInterfaceObject]

 interface POI{

 attribute DOMString? name;

 attribute LatLng? position;

 attribute Address address;

 };

Attributes
DOMString? name

Attribute denotes the name of the POI.

LatLng? position

Attribute reflects the geolocation of the POI as LatLng object.

Address address

Attribute denotes the address of the POI.

2.6. SuccessCallback

The interface defines the callback for a asynchronous function call insided the vehicle module.

 [Callback=FunctionOnly, NoInterfaceObject]

 interface SuccessCallback{

 void onSuccess();

 };

Methods
onSuccess

Method is triggered, if function has been succesfully called.

Signature

void onSuccess();

2.7. ErrorCallback

The interface defines the callback for a failed asynchronous function call inside the vehilce

module.

 [Callback=FunctionOnly, NoInterfaceObject]

 interface ErrorCallback{

 void onError(in VehicleError error);

 };

Methods
onError

Method is triggered, if asychronous function call fails.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 262 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Signature

void onError(in VehicleError error);

Parameters

 error

o Optional: No.

o Nullable: No

o Type: VehicleError

o Description: contains information about the error.

2.8. VehicleDataHandler

The interface defines the callback method to receive vehicle data in a non-recurring and

asynchronous way.

 interface VehicleDataHandler{

 void handleVehicleData(in VehicleEvent data);

 };

2.9. VehicleInterface

The interface defines general information about the vehicle and is the object, where the event

listener for vehicle related data can be registered. The interface is accessible through the

webinos.vehicle object.

 [NoInterfaceObject]

 interface VehicleInterface : EventTarget {

 const DOMString FUEL_UNLEADED = "unleaded";

 const DOMString FUEL_PREMIUM = "premium";

 const DOMString FUEL_DIESEL = "diesel";

 const DOMString TRANSMISSION_AUTOMATIC = "automatic";

 const DOMString TRANSMISSION_MANUAL = "manual";

 readonly attribute DOMString brand;

 readonly attribute DOMString model;

 readonly attribute DOMString year;

 readonly attribute DOMString fuel;

 readonly attribute DOMString transmission;

 void get(DOMString vehicleDataId, VehicleDataHandler handler, in

ErrorCallback errorCB);

 void requestGuidance(in SuccessCallback successCallback, in

ErrorCallback errorCallback, POI[] destinations);

 void findDestination(DestinationCallback destinationCallback, in

ErrorCallback errorCallback, DOMString search);

 };

Constants

DOMString FUEL_UNLEADED

Constant defines the fuel type unleaded.

DOMString FUEL_PREMIUM

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 263 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Constant defines the fuel type premium.

DOMString FUEL_DIESEL

Constant defines the fuel type diesel.

DOMString TRANSMISSION_AUTOMATIC

Constant defines the transmission type automatic.

DOMString TRANSMISSION_MANUAL

Constant defines the transmission type manual.

Attributes
readonly DOMString brand

Attribute denotes brand name of the vehicle.

This attribute is readonly.

readonly DOMString model

Attribute reflects model name of the vehicle.

This attribute is readonly.

readonly DOMString year

Attribute denotes production year of the vehicle.

This attribute is readonly.

readonly DOMString fuel

Attribute reflects fuel type of the vehicle.

This attribute is readonly.

readonly DOMString transmission

Attribute denotes transmission type of the vehicle.

This attribute is readonly.

Methods
get

Method allows to request vehicle data in a non-recurring way and is independant from

value changes (cf. events). The same identifiers are used for vehicle data as well as for

the different vehicle events (ClimateControlEvent, ControlEvent, NavigationEvent,

ParkSensorsEvent, ShiftEvent).

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 264 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Signature

void get(DOMString vehicleDataId, VehicleDataHandler handler, in

ErrorCallback errorCB);

Parameters

 vehicleDataId

o Optional: No.

o Nullable: No

o Type: DOMString

o Description: Parameter specifies the type of data, which shall be retrieved. The
identifiers for the different data types are defined in the different vehicle event
interfaces (ClimateControlEvent, ControlEvent, NavigationEvent,
ParkSensorsEvent, ShiftEvent). The identifiers for climate control data are
defined in constants CLIMATE_*, for control data in constants LIGHTS_* and
WHIPER_*, for navigation data in constants DESTINATION_*, for park sensors
data in constants PARKSENSORS_*, for shift data in constant SHIFT and for trip
computer data in constant TRIPCOMPUTER.

 handler

o Optional: No.

o Nullable: No

o Type: VehicleDataHandler

o Description: Parameter specifies the function to handle the result.

 errorCB

o Optional: No.

o Nullable: No

o Type: ErrorCallback

o Description: Parameter specifies the callback function in case of an error.

Code example
 webinos.vehicle.get(webinos.vehicle.ClimateControlEvent.CLIMATE_ALL, dataHandler);

 function dataHandler(data){

 if(data.acStatus){

 console.log("Airconditioning is on");

 if(data.desiredTemperature < 19){

 console.log("This is not so good for your health");

 }

 }

 }

requestGuidance

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 265 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Parameter sets the given POIs as the next destinations for the build-in navigation system.

The method handles intermediate stops. The last POI in the array is the final destination.

Signature

void requestGuidance(in SuccessCallback successCallback, in

ErrorCallback errorCallback,

 POI

 [] destinations);

Parameters

 successCallback

o Optional: No.

o Nullable: No

o Type: SuccessCallback

o Description: callback, if the POIs are succesully transferred.

 errorCallback

o Optional: No.

o Nullable: No

o Type: ErrorCallback

o Description: callback, if the address could not be transferred.

 destinations

o Optional: No.

o Nullable: No

o Type: array

o Description: in form of an POI array. The last POI in the array is the destination
point. The other POIs are intermediate stops along the route.

Code example
 var destinations =new Array();

 destination.push({name:"BMW AG", address : {street:"Petuelring", streetNumber:

"130", postalCode: "80788", city: "MÜNCHEN", country: "DE"}});

 destination.push({name:"BMW Forschung und Technik", address:{street: "Hanauer

Strasse", streetNumber: "46", postalCode: "80992", city: "MÜNCHEN", country: "DE"}});

 webinos.vehicle.requestGuidance(succesCB, null, destinations);

webinos.vehicle.addEventListener(webinos.vehicle.NavigationEvent.DESTINATION_REACHED,

handleDestinations, false);

 function handleDestinations(event){

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 266 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 if (event.address.street == destination[0].address.street) {

 console.log("Reached the HQ");

 } else if (event.address.street == destination[1].address.street) {

 console.log("Reached the research center");

 }

 }

findDestination

Queries the navigation system to retrieve POIs for a given search string.

Signature

void findDestination(DestinationCallback destinationCallback, in

ErrorCallback errorCallback, DOMString search);

Parameters

 destinationCallback

o Optional: No.

o Nullable: No

o Type: DestinationCallback

o Description: callback to handle the results to the search string.

 errorCallback

o Optional: No.

o Nullable: No

o Type: ErrorCallback

o Description: callback to handle errors.

 search

o Optional: No.

o Nullable: No

o Type: DOMString

o Description: search string for resolving a address.

Code example
 var destinations =new Array();

 webinos.vehicle.findDestination(destinationCB, errorCB,"BMW");

 function destinationCB(pois){

 if(destinations.length > 0){

 webinos.requestGuidance(successCB, errorCB, destinations);

 else{

 console.log("No POI found");

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 267 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 }

}

2.10. Vehicle

The Vehicle interface describes the part of the Vehicle API accessible through the webinos

object.

 [NoInterfaceObject] interface Vehicle {

 readonly attribute VehicleInterface vehicle;

 };

 webinoscore::Webinos implements Vehicle;

2.11. DestinationCallback

The interface defines the result callback for the asynchronous findDestination method.

 [Callback=FunctionOnly, NoInterfaceObject]

 interface DestinationCallback {

 void handleResults(in POI[] pois);

 };

Methods
handleResults

Function is called, when the results for a POI search are retrieved.

Signature

void handleResults(in

 POI

 [] pois);

Parameters

 pois

o Optional: No.

o Nullable: No

o Type: array

o Description: Parameter provides an array of POIs.

2.12. ClimateControlEvent

The interface defines a climate control event. The event provides information about changes to

the climate control system inside the vehicle.

 [NoInterfaceObject]

 interface ClimateControlEvent : VehicleEvent{

 const DOMString CLIMATE_ALL = "climate-all";

 const DOMString CLIMATE_DRIVER = "climate-driver";

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 268 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 const DOMString CLIMATE_PASSENGER_FRONT = "climate-passenger-front";

 const DOMString CLIMATE_PASSENGER_REAR_LEFT = "climate-passenger-rear-

left";

 const DOMString CLIMATE_PASSENGER_REAR_RIGHT = "climate-passenger-

rear-right";

 readonly attribute DOMString zone;

 readonly attribute unsigned short desiredTemperature;

 readonly attribute boolean acStatus;

 readonly attribute unsigned short ventLevel;

 readonly attribute boolean ventMode;

 void initClimateControlEvent(boolean bubbles, boolean cancelable,

DOMString zone, short desiredTemperature, boolean acStatus, short ventLevel, short

ventMode);

 };

Code example
 webinos.vehicle.addEventListener("climate", climateHandler, null);

 function climateHandler(data){

 console.log(data.zone + " desired temperature is " +

data.desiredTemperature + "° C");

 }

Constants

DOMString CLIMATE_ALL

Constant defines the single climate zone. This constant is used as an identifier for a

ClimateControlEvent and a non-recurring vehicle data request using the method

webinos.vehicle.get() for the overall zone.

DOMString CLIMATE_DRIVER

Constant describes the climate zone of the driver. This constant is used as an identifier

for a ClimateControlEvent and a non-recurring vehicle data request using the method

webinos.vehicle.get() for the driver zone.

DOMString CLIMATE_PASSENGER_FRONT

Constant defines the climate zone of the passenger seat in the front. This constant is used

as an identifier for a ClimateControlEvent and a non-recurring vehicle data request using

the method webinos.vehicle.get() for the passenger zone in the front.

DOMString CLIMATE_PASSENGER_REAR_LEFT

Constant defines the climate zone of the rear set passenger seat on the left. This constant

is used as an identifier for a ClimateControlEvent and a non-recurring vehicle data

request using the method webinos.vehicle.get() for the passenger zone in the rear on the

left side.

DOMString CLIMATE_PASSENGER_REAR_RIGHT

Constant defines the climate zone of the rear set passenger seat on the right. This constant

is used as an identifier for a ClimateControlEvent and a non-recurring vehicle data

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 269 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

request using the method webinos.vehicle.get() for the passenger zone in the rear on the

right side.

Attributes
readonly DOMString zone

Attribute defines the zone of the climate control event. The value of this attribute is

defined in the constants CLIMATE_*.

This attribute is readonly.

readonly unsigned short desiredTemperature

Attribute defines the desired temperature in degree celsius.

This attribute is readonly.

readonly boolean acStatus

Attribute defines, if the AC switched on or not.

This attribute is readonly.

readonly unsigned short ventLevel

Attribute defines the level of the vents. This value can be 1-9.

This attribute is readonly.

readonly boolean ventMode

Attribute defines if the vent is used in automatic mode or not.

This attribute is readonly.

Methods
initClimateControlEvent

Method is used to set initial values of a climate control event.

Signature

void initClimateControlEvent(boolean bubbles, boolean cancelable,

DOMString zone, short desiredTemperature, boolean acStatus, short

ventLevel, short ventMode);

Parameters

 bubbles

o Optional: No.

o Nullable: No

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 270 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

o Type: boolean

o Description: True if event bubbles.

 cancelable

o Optional: No.

o Nullable: No

o Type: boolean

o Description: True if event is cancelable.

 zone

o Optional: No.

o Nullable: No

o Type: DOMString

o Description: zone where event climate settings have been changed.

 desiredTemperature

o Optional: No.

o Nullable: No

o Type: short

o Description: desired temperature in degree celsius.

 acStatus

o Optional: No.

o Nullable: No

o Type: boolean

o Description: true if the air conditioning is running.

 ventLevel

o Optional: No.

o Nullable: No

o Type: short

o Description: level of the vent.

 ventMode

o Optional: No.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 271 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

o Nullable: No

o Type: short

o Description: true, if the vent is in automatic mode.

2.13. ControlEvent

The interface defines a control event. The event signals a change for a control unit inside the

vehicle (e.g. lights, wiper, etc.). The identifiers for the different control events are defined in the

constants LIGHTS_* and WHIPER_*

 interface ControlEvent : VehicleEvent{

 const DOMString LIGHTS_FOG_FRONT = "lights-fog-front";

 const DOMString LIGHTS_FOG_REAR = "lights-fog-rear";

 const DOMString LIGHTS_SIGNAL_LEFT = "lights-signal-left";

 const DOMString LIGHTS_SIGNAL_RIGHT = "lights-signal-right";

 const DOMString LIGHTS_SIGNAL_WARN = "lights-signal-warn";

 const DOMString LIGHTS_PARKING = "lights-parking";

 const DOMString LIGHTS_HIBEAM = "lights-hibeam";

 const DOMString LIGHTS_HEAD = "lights-head";

 const DOMString WHIPER_FRONT_WASH = "whiper-front-wash";

 const DOMString WHIPER_REAR_WASH = "whiper-rear-wash";

 const DOMString WHIPER_AUTOMATIC = "whiper-automatic";

 const DOMString WHIPER_FRONT_ONCE = "whiper-front-once";

 const DOMString WHIPER_REAR_ONCE = "whiper-front-once";

 const DOMString WHIPER_FRONT_LEVEL1 = "whiper-front-level1";

 const DOMString WHIPER_FRONT_LEVEL2 = "whiper-front-level2";

 readonly attribute DOMString conrolId;

 readonly attribute boolean active;

 void initControlEvent(boolean bubbles, boolean cancelable, DOMString

controlId, boolean active);

 };

Code example

 webinos.vehicle.addEventListener("lights-hibeam", lightHandler, false);

 function lightHandler(cEvent){

 if(cEvent.controlId == "lights-hibeam"){

 if(cEvent.active == true){

 console.log("Hibeam turned on");

 }else{

 console.log("Hibeam turned off");

 }

 }

 }

Constants

DOMString LIGHTS_FOG_FRONT

Constant indicates a change for the fog light in the front. This constant is used as an

identifier for a ControlEvent and a non-recurring vehicle data request using the method

webinos.vehicle.get() for the status of fogs light in the front.

DOMString LIGHTS_FOG_REAR

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 272 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Constant indicates a change for the fog light in the rear. This constant is used as an

identifier for a ControlEvent and a non-recurring vehicle data request using the method

webinos.vehicle.get() for the status of fogs light in the rear.

DOMString LIGHTS_SIGNAL_LEFT

Constant indicates a change for left turn signal. This constant is used as an identifier for a

ControlEvent and a non-recurring vehicle data request using the method

webinos.vehicle.get() for the status of the left signal.

DOMString LIGHTS_SIGNAL_RIGHT

Constant indicates a change for right turn signal. This constant is used as an identifier for

a ControlEvent and a non-recurring vehicle data request using the method

webinos.vehicle.get() for the status of the right signal.

DOMString LIGHTS_SIGNAL_WARN

Constant indicates a change for warn signal. This constant is used as an identifier for a

ControlEvent and a non-recurring vehicle data request using the method

webinos.vehicle.get() for the status of the warn signal.

DOMString LIGHTS_PARKING

Constant indicates a change for the parking lights. This constant is used as an identifier

for a ControlEvent and a non-recurring vehicle data request using the method

webinos.vehicle.get() for the status of the parking light.

DOMString LIGHTS_HIBEAM

Constant indicates a change for the hibeam. This constant is used as an identifier for a

ControlEvent and a non-recurring vehicle data request using the method

webinos.vehicle.get() for the status of the lights hibeam.

DOMString LIGHTS_HEAD

Constant indicates a change for the headlight. This constant is used as an identifier for a

ControlEvent and a non-recurring vehicle data request using the method

webinos.vehicle.get() for the status of the head light.

DOMString WHIPER_FRONT_WASH

Constant indicates front window is beeing washed. This constant is used as an identifier

for a ControlEvent and a non-recurring vehicle data request using the method

webinos.vehicle.get() for the status of the whiper front wash.

DOMString WHIPER_REAR_WASH

Constant indicates rear window is beeing washed. This constant is used as an identifier

for a ControlEvent and a non-recurring vehicle data request using the method

webinos.vehicle.get() for the status of the whiper rear wash.

DOMString WHIPER_AUTOMATIC

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 273 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Constant indicates whiper is in automatic mode. This constant is used as an identifier for

a ControlEvent and a non-recurring vehicle data request using the method

webinos.vehicle.get() for the status of the automatic whiper mode.

DOMString WHIPER_FRONT_ONCE

Constant indicates front whiper is beeing used once. This constant is used as an identifier

for a ControlEvent and a non-recurring vehicle data request using the method

webinos.vehicle.get() for the status of the whiper single mode in the front.

DOMString WHIPER_REAR_ONCE

Constant indicates rear whiper is beeing used once. This constant is used as an identifier

for a ControlEvent and a non-recurring vehicle data request using the method

webinos.vehicle.get() for the status of the whiper single mode in the rear.

DOMString WHIPER_FRONT_LEVEL1

constant indicates front whiper is on level 1. This constant is used as an identifier for a

ControlEvent and a non-recurring vehicle data request using the method

webinos.vehicle.get() for the status of the whiper on level 1 in the front.

DOMString WHIPER_FRONT_LEVEL2

constant indicates front whiper is on level 2. This constant is used as an identifier for a

ControlEvent and a non-recurring vehicle data request using the method

webinos.vehicle.get() for the status of the whiper on level 2 in the front.

Attributes
readonly DOMString conrolId

Attribute describes the source of the event. The value of the attribute is defined in the

constants LIGHTS_* and WHIPER_*.

This attribute is readonly.

readonly boolean active

Attribute describes the status of the control unit.

This attribute is readonly.

Methods
initControlEvent

Method sets initial values of a control event.

Signature

void initControlEvent(boolean bubbles, boolean cancelable, DOMString

controlId, boolean active);

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 274 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Parameters

 bubbles

o Optional: No.

o Nullable: No

o Type: boolean

o Description: True if event bubbles.

 cancelable

o Optional: No.

o Nullable: No

o Type: boolean

o Description: True if event cancelable.

 controlId

o Optional: No.

o Nullable: No

o Type: DOMString

o Description: specifies the control unit.

 active

o Optional: No.

o Nullable: No

o Type: boolean

o Description: specifies if the unit is activated or not.

2.14. NavigationEvent

The interface defines the navigation event. The identifiers for the different navigation events are

defined in the constants DESTINATTION_*.

 interface NavigationEvent : VehicleEvent{

 const DOMString DESTINATION_REACHED = "destination-reached";

 const DOMString DESTINATION_CHANGED = "destination-changed";

 const DOMString DESTINATION_CANCELLED = "destination-cancelled";

 readonly attribute DOMString type;

 readonly attribute Address address;

 void initNavigationEvent(boolean bubbles, boolean cancelable,

DOMString navigationEventId, Address destination);

 };

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 275 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Constants

DOMString DESTINATION_REACHED

Constant defines the event that the destination has been reached. This constant is used as

an identifier for a NavigationEvent and a non-recurring vehicle data request using the

method webinos.vehicle.get() for destination reached.

DOMString DESTINATION_CHANGED

Constant defines the event that a new destination has been set. This constant is used as an

identifier for a NavigationEvent and a non-recurring vehicle data request using the

method webinos.vehicle.get() for destination changed.

DOMString DESTINATION_CANCELLED

Constant defines the event that the navigation to a destination has been cancelled. This

constant is used as an identifier for a NavigationEvent and a non-recurring vehicle data

request using the method webinos.vehicle.get() for a cancelation of guidance to a

destination.

Attributes
readonly DOMString type

Attribute defines the type of the navigation event. The type can either be "destination-

reached", "destination-changed" or "destination-cancelled".

This attribute is readonly.

readonly Address address

Attribute defines for which address the event occured.

This attribute is readonly.

Methods
initNavigationEvent

Method sets initial values of a navigation event.

Signature

void initNavigationEvent(boolean bubbles, boolean cancelable, DOMString

navigationEventId, Address destination);

Parameters

 bubbles

o Optional: No.

o Nullable: No

o Type: boolean

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 276 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

o Description: True if event bubbles.

 cancelable

o Optional: No.

o Nullable: No

o Type: boolean

o Description: True if event cancelable.

 navigationEventId

o Optional: No.

o Nullable: No

o Type: DOMString

o Description: Sensor type.

 destination

o Optional: No.

o Nullable: No

o Type: Address

o Description: destination for which the event occured.

2.15. ParkSensorsEvent

This interface defines an event related to the built-in park sensors. The identifiers for the

different events are defined in the constants PARKSENSENSORS_FRONT and

PARKSENSENSORS_REAR. A listener can be registered by

vehicle.addEventLister("parksensor-front",listener,false).

 interface ParkSensorsEvent : VehicleEvent{

 const DOMString PARKSENSENSORS_FRONT = "parksensors-front";

 const DOMString PARKSENSENSORS_REAR = "parksensors-rear";

 readonly attribute DOMString position;

 readonly attribute unsigned short left;

 readonly attribute unsigned short midLeft;

 readonly attribute unsigned short midRigth;

 readonly attribute unsigned short rigth;

 void initParkSensorsEvent(boolean bubbles, boolean cancelable,

DOMString position, short left, short midLeft, short midRight, short right);

 };

Code example

 webinos.vehicle.addEventListener("parksensor-front", psHandler, false);

 webinos.vehicle.addEventListener("parksensor-rear", psHandler, false);

 function psHandler(psEvent){

 if(psEvent.left == 20){

 console.log("obstacle on the left in" + psEvent.position + "

is close");

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 277 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 }

 }

Constants

DOMString PARKSENSENSORS_FRONT

Constant defines that the event was emitted by the park sensors in the front. This constant

is used as an identifier for a ParkSensorEvent and a non-recurring vehicle data request

using the method webinos.vehicle.get() for the status of the park sensors in the front.

DOMString PARKSENSENSORS_REAR

Constant defines that the event was emitted by the park sensors in the rear. This constant

is used as an identifier for a ParkSensorEvent and a non-recurring vehicle data request

using the method webinos.vehicle.get() for the status of the park sensors in the rear.

Attributes
readonly DOMString position

Attribute defines the position of the sensor. The value of the attribute is either

PARKSENSENSORS_FRONT or PARKSENSENSORS_REAR.

This attribute is readonly.

readonly unsigned short left

Attribute reflects the destination to an object sensed by the sensor on the left side in

centimeters. Minimum distance is 20 centimeters. Maximum distance is 250 centimeters.

A value of -1 indiactes that no object has been sensed.

This attribute is readonly.

readonly unsigned short midLeft

Attribute reflects the destination to an object sensed by the sensor on the middle left side

in centimeters. Minimum distance is 20 centimeters. Maximum distance is 250

centimeters. A value of -1 indiactes that no object has been sensed.

This attribute is readonly.

readonly unsigned short midRigth

Attribute reflects the destination to an object sensed by the sensor on the middle right

side in centimeters. Minimum distance is 20 centimeters. Maximum distance is 250

centimeters. A value of -1 indiactes that no object has been sensed.

This attribute is readonly.

readonly unsigned short rigth

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 278 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Attribute reflects the destination to an object sensed by the sensor on the rigth side in

centimeters. Minimum distance is 20 centimeters. Maximum distance is 250 centimeters.

A value of -1 indiactes that no object has been sensed.

This attribute is readonly.

Methods
initParkSensorsEvent

Method sets initial values of a park sensors event.

Signature

void initParkSensorsEvent(boolean bubbles, boolean cancelable,

DOMString position, short left, short midLeft, short midRight, short

right);

Parameters

 bubbles

o Optional: No.

o Nullable: No

o Type: boolean

o Description: True if event bubbles.

 cancelable

o Optional: No.

o Nullable: No

o Type: boolean

o Description: True if event cancelable.

 position

o Optional: No.

o Nullable: No

o Type: DOMString

o Description: position of the sensors: front or rear.

 left

o Optional: No.

o Nullable: No

o Type: short

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 279 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

o Description: data from the left sensor.

 midLeft

o Optional: No.

o Nullable: No

o Type: short

o Description: data from the middle left sensor.

 midRight

o Optional: No.

o Nullable: No

o Type: short

o Description: data from the middle right sensor.

 right

o Optional: No.

o Nullable: No

o Type: short

o Description: data from the right sensor.

2.16. ShiftEvent

This interface defines a shift event. A listener can be registered by

vehicle.addEventLister("shift",listener,false).

 interface ShiftEvent : VehicleEvent{

 const DOMString SHIFT = "shift";

 const short GEAR_ONE = 1;

 const short GEAR_TWO = 2;

 const short GEAR_THREE = 3;

 const short GEAR_FOUR = 4;

 const short GEAR_FIFE = 5;

 const short GEAR_SIX = 6;

 const short GEAR_SEVEN = 7;

 const short GEAR_EIGHT = 8;

 const short GEAR_REVERSE = -1;

 const short GEAR_NEUTRAL = 0;

 const short GEAR_PARKING = -2;

 readonly attribute short gear;

 void initShiftEvent(boolean bubbles, boolean cancelable, short gear);

 };

Code example
 // registering an Event for a Shift

 webinos.vehicle.addEventListener("shift", shiftHandler);

 function shiftHandler(e){

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 280 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 document.getElementById("info").innerHTML = e.gear;

 webinos.vehicle.removeEventListener("shift", shiftHandler);

 }

Constants

DOMString SHIFT

Constant defines shift event. This constant is used as an identifier for a shift event and a

non-recurring vehicle data request using the method webinos.vehicle.get() for the gear.

short GEAR_ONE

Constant defines the first gear.

short GEAR_TWO

Constant defines the second gear.

short GEAR_THREE

Constant defines the third gear.

short GEAR_FOUR

Constant defines the fourth gear.

short GEAR_FIFE

Constant defines the fifth gear.

short GEAR_SIX

Constant defines the sixth gear.

short GEAR_SEVEN

Constant defines the seventh gear.

short GEAR_EIGHT

Constant defines the eighth gear.

short GEAR_REVERSE

Constant defines the reverse gear.

short GEAR_NEUTRAL

Constant defines the neutral gear.

short GEAR_PARKING

Constant defines the parking gear.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 281 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Attributes
readonly short gear

Attribute represents the current gear of the vehicle.

This attribute is readonly.

Methods
initShiftEvent

Method sets initial values a shift event.

Signature

void initShiftEvent(boolean bubbles, boolean cancelable, short gear);

Parameters

 bubbles

o Optional: No.

o Nullable: No

o Type: boolean

o Description: True if event bubbles.

 cancelable

o Optional: No.

o Nullable: No

o Type: boolean

o Description: True if event cancelable.

 gear

o Optional: No.

o Nullable: No

o Type: short

o Description: current gear of the engine.

2.17. TripComputerEvent

The interface defines a trip computer event. A listener can be registered by

vehicle.addEventLister("tripcomputer",listener,false).

 interface TripComputerEvent : VehicleEvent{

 const DOMString TRIPCOMPUTER = "tripcomputer";

 readonly attribute float averageConsumption1;

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 282 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 readonly attribute float averageConsumption2;

 readonly attribute float averageSpeed1;

 readonly attribute float averageSpeed2;

 readonly attribute float tripDistance;

 readonly attribute float milage;

 readonly attribute float range;

 void initTripComputerEvent(boolean bubbles, boolean cancelable, float

averageConsumption1, float averageConsumption2, float averageSpeed1, float

averageSpeed2, float tripDistance, float mileage, float range);

 };

Code example
var latestConsumption = 0;

webinos.vehicle.addEventListener("tripcomputer", tripDataHandler, false);

function tripDataHandler(data){

 //Calculating, if the fuel efficiency increased, since the last update

 var gap = latestConsumption - data.averageConsumption1;

 if(gap < 0){

 console.log("Thumbs down. You decreased your fuel efficiency");

 } else if (gap > 0){

 console.log("Thumbs up. You increased your fuel efficiency");

 } else {

 console.log("nothing changed");

 }

 latestConsumption = data.averageConsumption1;

 if (data.range < 20){

 console.log("You really need " + webinos.vehicle.fuel + "soon.");

 }

}

Constants

DOMString TRIPCOMPUTER

Constant defines a trip computer event. This constant is used as an identifier for a trip

computer event and a non-recurring trip data request using the method

webinos.vehicle.get() for trip computer data.

Attributes
readonly float averageConsumption1

Attrubute reflects the average consumption 1 of the vehicle in l/100kilometers (resets

automatically after a trip).

This attribute is readonly.

readonly float averageConsumption2

Attrubute reflects the average consumption 2 of the vehicle in l/100kilometers (resets on

driver's demand).

This attribute is readonly.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 283 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

readonly float averageSpeed1

Attrubute reflects the average speed of the vehicle in kilometers per hour (resets

automatically after a trip).

This attribute is readonly.

readonly float averageSpeed2

Attrubute reflects average speed of the vehicle in kilometers per hour (resets on driver's

demand).

This attribute is readonly.

readonly float tripDistance

Attrubute reflects trip distance in kilometers.

This attribute is readonly.

readonly float milage

Attrubute reflects milage in kilometers.

This attribute is readonly.

readonly float range

Attrubute reflects the range of the vehicle in kilometers.

This attribute is readonly.

Methods
initTripComputerEvent

Method sets the initial values of a trip computer event.

Signature

void initTripComputerEvent(boolean bubbles, boolean cancelable, float

averageConsumption1, float averageConsumption2, float averageSpeed1,

float averageSpeed2, float tripDistance, float mileage, float range);

Parameters

 bubbles

o Optional: No.

o Nullable: No

o Type: boolean

o Description: True if event bubbles.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 284 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 cancelable

o Optional: No.

o Nullable: No

o Type: boolean

o Description: True if event cancelable.

 averageConsumption1

o Optional: No.

o Nullable: No

o Type: float

o Description: average consumption 1 of the vehicle in l/100kilometers.

 averageConsumption2

o Optional: No.

o Nullable: No

o Type: float

o Description: average consumption 2 of the vehicle in l/100kilometers.

 averageSpeed1

o Optional: No.

o Nullable: No

o Type: float

o Description: average speed 1 of the vehicle in kilometers per hour.

 averageSpeed2

o Optional: No.

o Nullable: No

o Type: float

o Description: average speed 2 of the vehicle in kilometers per hour.

 tripDistance

o Optional: No.

o Nullable: No

o Type: float

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 285 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

o Description: distance of the current trip in kilometers.

 mileage

o Optional: No.

o Nullable: No

o Type: float

o Description: overall driven distance in kilometers.

 range

o Optional: No.

o Nullable: No

o Type: float

o Description: range of the vehicle in kilometers.

3. Features

This is the list of URIs used to declare this API's features, for use in the widget config.xml and as

identifier for service type in service discovery functionality. For each URI, the list of functions

covered is provided.

http://webinos.org/api/vehicle

Identifies the light sensor type.

http://webinos.org/api/vehicle.climate

Identifies vehicle data related to climate controls.

http://webinos.org/api/vehicle.navigation

Identifies the navigation module of a vehicle.

http://webinos.org/api/vehicle.parksensors

Identifies park sensor modules of a vehicle.

http://webinos.org/api/vehicle.tripcomputer

Identifies the trip computer information of a vehicle.

http://webinos.org/api/vehicle.controls

Identifies control data (e.g. whipers and lights) of a vehicle

4. Full WebIDL
module vehicle{

 interface VehicleError : Error{

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 286 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 const short ACCESS_DENIED = 1;

 const short NOT_AVAILABLE = 2;

 const short UNKNOWN = 0;

 };

 [NoInterfaceObject]

 interface Address{

 attribute DOMString country;

 attribute DOMString? region;

 attribute DOMString? county;

 attribute DOMString city;

 attribute DOMString street;

 attribute DOMString streetNumber;

 attribute DOMString? premises;

 attribute DOMString additionalInformation;

 attribute DOMString postalCode;

 };

 [NoInterfaceObject]

 interface VehicleEvent : Event{

 };

 [NoInterfaceObject]

 interface LatLng{

 attribute double latitude;

 attribute double longitude;

 };

 [NoInterfaceObject]

 interface POI{

 attribute DOMString? name;

 attribute LatLng? position;

 attribute Address address;

 };

 [Callback=FunctionOnly, NoInterfaceObject]

 interface SuccessCallback{

 void onSuccess();

 };

 [Callback=FunctionOnly, NoInterfaceObject]

 interface ErrorCallback{

 void onError(in VehicleError error);

 };

 interface VehicleDataHandler{

 void handleVehicleData(in VehicleEvent data);

 };

 [NoInterfaceObject]

 interface VehicleInterface : EventTarget {

 const DOMString FUEL_UNLEADED = "unleaded";

 const DOMString FUEL_PREMIUM = "premium";

 const DOMString FUEL_DIESEL = "diesel";

 const DOMString TRANSMISSION_AUTOMATIC = "automatic";

 const DOMString TRANSMISSION_MANUAL = "manual";

 readonly attribute DOMString brand;

 readonly attribute DOMString model;

 readonly attribute DOMString year;

 readonly attribute DOMString fuel;

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 287 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 readonly attribute DOMString transmission;

 void get(DOMString vehicleDataId, VehicleDataHandler handler, in

ErrorCallback errorCB);

 void requestGuidance(in SuccessCallback successCallback, in

ErrorCallback errorCallback, POI[] destinations);

 void findDestination(DestinationCallback destinationCallback, in

ErrorCallback errorCallback, DOMString search);

 };

 [NoInterfaceObject] interface Vehicle {

 readonly attribute VehicleInterface vehicle;

 };

 webinoscore::Webinos implements Vehicle;

 [Callback=FunctionOnly, NoInterfaceObject]

 interface DestinationCallback {

 void handleResults(in POI[] pois);

 };

 [NoInterfaceObject]

 interface ClimateControlEvent : VehicleEvent{

 const DOMString CLIMATE_ALL = "climate-all";

 const DOMString CLIMATE_DRIVER = "climate-driver";

 const DOMString CLIMATE_PASSENGER_FRONT = "climate-passenger-front";

 const DOMString CLIMATE_PASSENGER_REAR_LEFT = "climate-passenger-rear-

left";

 const DOMString CLIMATE_PASSENGER_REAR_RIGHT = "climate-passenger-

rear-right";

 readonly attribute DOMString zone;

 readonly attribute unsigned short desiredTemperature;

 readonly attribute boolean acStatus;

 readonly attribute unsigned short ventLevel;

 readonly attribute boolean ventMode;

 void initClimateControlEvent(boolean bubbles, boolean cancelable,

DOMString zone, short desiredTemperature, boolean acStatus, short ventLevel, short

ventMode);

 };

 interface ControlEvent : VehicleEvent{

 const DOMString LIGHTS_FOG_FRONT = "lights-fog-front";

 const DOMString LIGHTS_FOG_REAR = "lights-fog-rear";

 const DOMString LIGHTS_SIGNAL_LEFT = "lights-signal-left";

 const DOMString LIGHTS_SIGNAL_RIGHT = "lights-signal-right";

 const DOMString LIGHTS_SIGNAL_WARN = "lights-signal-warn";

 const DOMString LIGHTS_PARKING = "lights-parking";

 const DOMString LIGHTS_HIBEAM = "lights-hibeam";

 const DOMString LIGHTS_HEAD = "lights-head";

 const DOMString WHIPER_FRONT_WASH = "whiper-front-wash";

 const DOMString WHIPER_REAR_WASH = "whiper-rear-wash";

 const DOMString WHIPER_AUTOMATIC = "whiper-automatic";

 const DOMString WHIPER_FRONT_ONCE = "whiper-front-once";

 const DOMString WHIPER_REAR_ONCE = "whiper-front-once";

 const DOMString WHIPER_FRONT_LEVEL1 = "whiper-front-level1";

 const DOMString WHIPER_FRONT_LEVEL2 = "whiper-front-level2";

 readonly attribute DOMString conrolId;

 readonly attribute boolean active;

 void initControlEvent(boolean bubbles, boolean cancelable, DOMString

controlId, boolean active);

 };

 interface NavigationEvent : VehicleEvent{

 const DOMString DESTINATION_REACHED = "destination-reached";

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 288 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 const DOMString DESTINATION_CHANGED = "destination-changed";

 const DOMString DESTINATION_CANCELLED = "destination-cancelled";

 readonly attribute DOMString type;

 readonly attribute Address address;

 void initNavigationEvent(boolean bubbles, boolean cancelable,

DOMString navigationEventId, Address destination);

 };

 interface ParkSensorsEvent : VehicleEvent{

 const DOMString PARKSENSENSORS_FRONT = "parksensors-front";

 const DOMString PARKSENSENSORS_REAR = "parksensors-rear";

 readonly attribute DOMString position;

 readonly attribute unsigned short left;

 readonly attribute unsigned short midLeft;

 readonly attribute unsigned short midRigth;

 readonly attribute unsigned short rigth;

 void initParkSensorsEvent(boolean bubbles, boolean cancelable,

DOMString position, short left, short midLeft, short midRight, short right);

 };

 interface ShiftEvent : VehicleEvent{

 const DOMString SHIFT = "shift";

 const short GEAR_ONE = 1;

 const short GEAR_TWO = 2;

 const short GEAR_THREE = 3;

 const short GEAR_FOUR = 4;

 const short GEAR_FIFE = 5;

 const short GEAR_SIX = 6;

 const short GEAR_SEVEN = 7;

 const short GEAR_EIGHT = 8;

 const short GEAR_REVERSE = -1;

 const short GEAR_NEUTRAL = 0;

 const short GEAR_PARKING = -2;

 readonly attribute short gear;

 void initShiftEvent(boolean bubbles, boolean cancelable, short gear);

 };

 interface TripComputerEvent : VehicleEvent{

 const DOMString TRIPCOMPUTER = "tripcomputer";

 readonly attribute float averageConsumption1;

 readonly attribute float averageConsumption2;

 readonly attribute float averageSpeed1;

 readonly attribute float averageSpeed2;

 readonly attribute float tripDistance;

 readonly attribute float milage;

 readonly attribute float range;

 void initTripComputerEvent(boolean bubbles, boolean cancelable, float

averageConsumption1, float averageConsumption2, float averageSpeed1, float

averageSpeed2, float tripDistance, float mileage, float range);

 };

};

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 289 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

APIs: The webinoscore module

Webinos API Specifications

17 May 2011

Authors

 Claes Nilsson <claes1.nilsson@sonyericsson.com>

© 2011 webinos consortium, www.webinos.org.

Abstract

Webinos core interfaces

Summary of Methods

Interface Method

WebinosObject

Webinos

1. Introduction

This specification defines the common interface from which all Webinos APIs are can be

accessed as well as several interfaces that are commonly reused.

This version of the specification defines:

- The core Webinos interface. In this version this interface is part of the window global object

but this has to be discussed. W3C DAP hangs the APIs on Device on Navigator.

It is to be considered if more common interfaces should be included in this specification, for

example:

- A common PendingOperation interface

- Methods to retrieve lists of available and activated feature

- Generic error interface

- Generic success callback

- Generic error callback

- Common array types

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 290 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

2. Interfaces

2.1. WebinosObject

Webinos object

 interface WebinosObject {

 readonly attribute Webinos webinos;

 };

 Window implements WebinosObject;

Defines that the webinos interface is part of the window global object.

2.2. Webinos

Webinos interface

 interface Webinos {

 };

The is the Webinos root interface and is initially defined as an empty interface on which the

various Webinos APIs that are defined elsewhere graft themselves. A user agent supporting the

Webinos interface must do so according to the following WebIDL [WEBIDL] definition.

3. Features

4. Full WebIDL
module webinoscore {

 interface WebinosObject {

 readonly attribute Webinos webinos;

 };

 Window implements WebinosObject;

 interface Webinos {

 };

};

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 291 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

APIs: The widget module

Webinos API Specifications

29 Jun 2011

Authors

 Andre Paul andre.paul@fokus.fraunhofer.de;

© 2011 webinos consortium, www.webinos.org.

Abstract

Webinos widget interfaces

Summary of Methods

Interface Method

NotifySuccessCallback void onSuccess(DOMString id)

NotifyErrorCallback void onError(DOMString id)

DeploymentSuccessCallback void onSuccess(DOMString childID, DOMString serviceID)

DeploymentErrorCallback void onError(DeploymentError error)

DeploymentError

Widget

void exit()

void hide()

boolean isHidden()

void notify(NotifySuccessCallback onSuccess, NotifyErrorCallback onError,

DOMString title, DOMString shortDescription, DOMString id, DOMString

icon)

void cancelNotify(DOMString id)

void onDestroy()

void onBackground()

void onForeground()

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 292 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Interface Method

void onStop()

void onStart()

void deployChild(DeploymentSuccessCallback onSuccess,

DeploymentErrorCallback onError, DOMString childApplicationID, boolean

local)

WindowWidget

1. Introduction

This specification defines the common widget interface. The webinos application packaging is

based on W3C Widget Specifications, thus, the interface definition is also based on W3C.

Namely W3C Widget Interface (http://www.w3.org/TR/2011/WD-widgets-apis-20110607/).

This specification recaptures the W3C specification while adding webinos specific extensions.

2. Interfaces

2.1. NotifySuccessCallback

Callback for successfull notifications

 [NoInterfaceObject] interface NotifySuccessCallback {

 void onSuccess(in DOMString id);

 };

Methods
onSuccess

Accepted Notification.

Signature

void onSuccess(in DOMString id);

Called if an event was accepted by the user. If provided, the notification id is provided to

link the success callback to a specific notification request.

Parameters

 id

o Optional: No.

o Nullable: No

o Type: DOMString

o Description: the optional id of the notification request or null if no id was
provided.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 293 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

2.2. NotifyErrorCallback

Callback for failed notifications

 [NoInterfaceObject] interface NotifyErrorCallback {

 void onError(in DOMString id);

 };

Methods
onError

Discarded Notification.

Signature

void onError(in DOMString id);

Called if an event was not accepted by the user. If provided, the notification id is passed

in to link the error to a specific notification request.

Parameters

 id

o Optional: No.

o Nullable: No

o Type: DOMString

o Description: the optional id of the notification request or null if no id was
provided.

2.3. DeploymentSuccessCallback

Callback for successfull installations

 [NoInterfaceObject] interface DeploymentSuccessCallback {

 void onSuccess(in DOMString childID, in DOMString serviceID);

 };

Methods
onSuccess

Called when an application was successfully deployed.

Signature

void onSuccess(in DOMString childID, in DOMString serviceID);

Called when an application was successfully deployed on another device using

deployChild.

Parameters

 childID

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 294 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

o Optional: No.

o Nullable: No

o Type: DOMString

o Description: is the application id which was used during deployChild and
declared in the manifest

 serviceID

o Optional: No.

o Nullable: No

o Type: DOMString

o Description: is the unique application instance id that can be used to explicitly
address the deployed service within webinos service discovery

2.4. DeploymentErrorCallback

Callback for failed installations

 [Callback=FunctionOnly, NoInterfaceObject] interface DeploymentErrorCallback {

 void onError (in DeploymentError error);

 };

Methods
onError

Failled installions.

Signature

void onError(in DeploymentError error);

Called if an installation was not accepted by the user or any other error occurred.

Parameters

 error

o Optional: No.

o Nullable: No

o Type: DeploymentError

o Description: The Widget API related error object of an unsuccessful application
installation operation.

Return value

void

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 295 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

2.5. DeploymentError

Application installation specific errors.

 interface DeploymentError {

 const unsigned short INSTALLATION_CANCELED_BY_USER = 101;

 const unsigned short PERMISSION_DENIED_ERROR = 102;

 const unsigned short NOT_REACHABLE = 103;

 const unsigned short UNKNOWN_APPLICATION_ID = 104;

 const unsigned short ALREADY_INSTALLED = 105;

 const unsigned short INSTALLATION_ERROR_OTHER = 106;

 readonly attribute unsigned short code;

 readonly attribute DOMString applicationID;

 };

The DeploymentError interface encapsulates all errors related to installation of applications. on

the same or on other devices using the deploy function.

Constants

unsigned short INSTALLATION_CANCELED_BY_USER

Installation was cancelled by the user.

unsigned short PERMISSION_DENIED_ERROR

Not Authorized to use the service.

unsigned short NOT_REACHABLE

Device where the application should be installed on is not reachable. Consider retrying

later.

unsigned short UNKNOWN_APPLICATION_ID

Device where the application should be installed on is not reachable. Consider retrying

later.

unsigned short ALREADY_INSTALLED

Already Installed.

unsigned short INSTALLATION_ERROR_OTHER

Any other error.

Attributes
readonly unsigned short code

An error code assigned by an implementation when an error has occurred.

This attribute is readonly.

readonly DOMString applicationID

The application ID the error relates to.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 296 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

This attribute is readonly.

2.6. Widget

Widget Interface

 interface Widget {

 readonly attribute DOMString distributor;

 readonly attribute DOMString distributorEmail;

 readonly attribute DOMString distributorHref;

 readonly attribute DOMString versionName;

 readonly attribute unsigned long long validfor;

 readonly attribute unsigned long long validuntil;

 readonly attribute DOMString author;

 readonly attribute DOMString authorEmail;

 readonly attribute DOMString authorHref;

 readonly attribute DOMString description;

 readonly attribute DOMString id;

 readonly attribute DOMString name;

 readonly attribute DOMString shortName;

 readonly attribute Storage preferences;

 readonly attribute DOMString version;

 readonly attribute unsigned long height;

 readonly attribute unsigned long width;

 void exit();

 void hide();

 boolean isHidden();

 void notify(in NotifySuccessCallback onSuccess, in NotifyErrorCallback onError, in

DOMString title, in optional DOMString shortDescription, in optional DOMString id, in

optional DOMString icon);

 void cancelNotify(in DOMString id);

 void onDestroy();

 void onBackground();

 void onForeground();

 void onStop();

 void onStart();

 void deployChild(in DeploymentSuccessCallback onSuccess, in

DeploymentErrorCallback onError, in DOMString childApplicationID, in optional boolean

local);

 };

Defines that the webinos interface is part of the window global object.

Attributes
readonly DOMString distributor

An distributor attribute that represents people or an organization that distributed the

widget.

This attribute is readonly.

readonly DOMString distributorEmail

A string attribute that represents an email address associated with the distributor.

This attribute is readonly.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 297 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

readonly DOMString distributorHref

A string attribute that represents an email address associated with the distributor.

This attribute is readonly.

readonly DOMString versionName

A human readable version name.

This attribute is readonly.

readonly unsigned long long validfor

The validfor attributed defines a time interval until when the application is valid and can

be used.

The time frame is specified in elapsed milliseconds after the first application execution.

This attribute is readonly.

readonly unsigned long long validuntil

The validuntil attributed defines a date and time until the application is valid and can be

used.

The time frame is specified as in milliseconds whereas the date and time is encoded as

milliseconds since midnight of January 1, 1970, according to universal time.

This attribute is readonly.

readonly DOMString author

An author attribute that represents people or an organization attributed with the creation

of the widget.

This attribute is readonly.

readonly DOMString authorEmail

A string attribute that represents an email address associated with the author.

This attribute is readonly.

readonly DOMString authorHref

An IRI attribute whose value represents an IRI that the author associates with himself or

herself (e.g., a homepage, a profile on a social network, etc.).

This attribute is readonly.

readonly DOMString description

The description element represents a human-readable description of the widget.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 298 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

This attribute is readonly.

readonly DOMString id

An IRI attribute that denotes an identifier for the widget.

This attribute is readonly.

readonly DOMString name

The name element represents the full human-readable name for a widget that is used, for

example, in an application menu or in other contexts.

This attribute is readonly.

readonly DOMString shortName

A displayable-string attribute intended to represent a condensed name for a widget (e.g.,

a name that could be used in context were only limited space is available, such as

underneath an icon).

This attribute is readonly.

readonly Storage preferences

The preference element allows authors to access preferences declared in the manifest file.

For a complete definition of the Storage attribute please read the W3C specification of

the storage attribute in the Widget specification (http://www.w3.org/TR/2011/WD-

widgets-apis-20110607/).

This attribute is readonly.

readonly DOMString version

A version attribute that specifies the version of the widget.

This attribute is readonly.

readonly unsigned long height

A numeric attribute greater than 0 that indicates the preferred viewport height of the

instantiated custom start file in CSS pixels.

This attribute is readonly.

readonly unsigned long width

A numeric attribute greater than 0 that indicates the preferred viewport width of the

instantiated custom start file in CSS pixels.

This attribute is readonly.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 299 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Methods
exit

Close the running application.

Signature

void exit();

Allows an application to trigger calling destroy from the runtime which results in

stopping the application execution and closing the application.

Code example

 //terminate the widget by its own

 window.widget.exit();

hide

Hide the running application.

Signature

void hide();

Sends the application to background if possible so that it is not visible to the user

anymore if possible by the platform the application execution goes on

Code example

 //the widget is not visible anymore if possible

 window.widget.hide();

isHidden

Checks visibility status.

Signature

boolean isHidden();

Asks the WRT wheather the application is currently hidden (not visible to the user) or not

if the application is hidden and want to come to foreground it may notify an event to the

user.

Code example

 if (window.widget.isHidden()){

 //do things, e.g., create a notification

 };

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 300 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

notify

Issues a notification to the user.

Signature

void notify(in NotifySuccessCallback onSuccess, in NotifyErrorCallback

onError, in DOMString title, in optional DOMString shortDescription, in

optional DOMString id, in optional DOMString icon);

Triggers the WRT to notify occurence of an event, as described using the parameters, to

the user The user can click the event. If the application is in background the application

must be brought to foreground. After that onSuccess is called.

Triggers the WRT to notify occurrence of an event, as described using the parameters, to

the user The user can click the event or reject it. If the application is in background and

the user accepted the event, e.g., by clicking on it, the application must be brought back

to foreground. The notify success callback is then called after onForeground was called.

Parameters

 onSuccess

o Optional: No.

o Nullable: No

o Type: NotifySuccessCallback

o Description: NotifySuccessCallback issued when the user accepts the
notification.

 onError

o Optional: No.

o Nullable: No

o Type: NotifyErrorCallback

o Description: ErrorCallback issued when the notification is discarded.

 title

o Optional: No.

o Nullable: No

o Type: DOMString

o Description: A short title describing the notification.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 301 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 shortDescription

o Optional: Yes.

o Nullable: No

o Type: DOMString

o Description: A short description about the notification.

 id

o Optional: Yes.

o Nullable: No

o Type: DOMString

o Description: An local identifier that represents the event and can be used to
cancel the event or to take actions within the callbacks.

 icon

o Optional: Yes.

o Nullable: No

o Type: DOMString

o Description: A relative path within the application package to an icon describing
the notification.

Code example
 function error(id){

 if (id == "1"){

 //e.g, clear new e-mail list

 }

 }

 function success(id){

 if (id == "1"){

 //e.g, show new e-mails

 }

 else{

 if (id == "2"){

 //e.g, show new SMS messages

 }

 }

 }

 window.widget.notify(success, error, "New Emails", "You have 5 new E-Mails", 1);

cancelNotify

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 302 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Cancels an ongoing notification.

Signature

void cancelNotify(in DOMString id);

To cancel a previous notify because it is updated or expired (if ongoing / not clicked by

the user)

Parameters

 id

o Optional: No.

o Nullable: No

o Type: DOMString

o Description: The notification id to cancel.

Code example

 //cancel notifications with id 1

 window.widget.cancelNotify("1");

onDestroy

Asynchronous callback indicating that the application will be terminated.

Signature

void onDestroy();

Callback function which is called if the application will be shut down by the WRT. All

application memory assigned to the application will be freed after returning out of this

function.

onBackground

Asynchronous callback indicating that the application is gone to background.

Signature

void onBackground();

Callback function which is called after the application was put to background, e.g.,

another application goes to foreground and the application is not visible any more. After

calling onBackground the application is still running but not visible anymore.

onForeground

Asynchronous callback indicating that the application is gone to foreground.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 303 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Signature

void onForeground();

Application goes to foreground after previously going to background.

onStop

Asynchronous callback indicating that application execution is going to be stopped.

Signature

void onStop();

Application execution is stopped aftern returning out of this function.

onStart

Asynchronous callback indicating that application execution is continued.

Signature

void onStart();

Application execution is continued after previously stopped.

deployChild

Requests to install an application on another device.

Signature

void deployChild(in DeploymentSuccessCallback onSuccess, in

DeploymentErrorCallback onError, in DOMString childApplicationID, in

optional boolean local);

Deploys a child application known to the WRT through the definition in the application s

manifest file on another device. If local = false or not specified the WRT has to provide a

list of available devices to the user where the application should be installed on, if local =

true the WRT has to install the selected child on the same device as the API is bound to.

Parameters

 onSuccess

o Optional: No.

o Nullable: No

o Type: DeploymentSuccessCallback

o Description: SuccessCallback called after successfull installation.

 onError

o Optional: No.

o Nullable: No

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 304 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

o Type: DeploymentErrorCallback

o Description: ErrorCallback called if installation was not possible.

 childApplicationID

o Optional: No.

o Nullable: No

o Type: DOMString

o Description: the application ID of the child package to be installed.

 local

o Optional: Yes.

o Nullable: No

o Type: boolean

o Description: Indicates if application should be installed on the same device as
the requesting application or not.

Code example
 function error(){

 //installation failed

 }

 function success(childID, serviceID){

 //application was successfully deployed

 //serviceID can be used for discovery to bind directly to this application

 //if functions are exposed by the application

 }

 //installing child application with name child1.wgt on the same device

 window.widget.deployChild(success, error, "child1.wgt", true);

2.7. WindowWidget

The WindowWidget interface describes the part of the Widget API accessible through the

window object.

 [Supplemental, NoInterfaceObject]interface WindowWidget {

 readonly attribute Widget widget;

 };

 Window implements WindowWidget;

3. Features

4. Full WebIDL
module widget {

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 305 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 [NoInterfaceObject] interface NotifySuccessCallback {

 void onSuccess(in DOMString id);

 };

 [NoInterfaceObject] interface NotifyErrorCallback {

 void onError(in DOMString id);

 };

 [NoInterfaceObject] interface DeploymentSuccessCallback {

 void onSuccess(in DOMString childID, in DOMString serviceID);

 };

 [Callback=FunctionOnly, NoInterfaceObject] interface DeploymentErrorCallback {

 void onError (in DeploymentError error);

 };

 interface DeploymentError {

 const unsigned short INSTALLATION_CANCELED_BY_USER = 101;

 const unsigned short PERMISSION_DENIED_ERROR = 102;

 const unsigned short NOT_REACHABLE = 103;

 const unsigned short UNKNOWN_APPLICATION_ID = 104;

 const unsigned short ALREADY_INSTALLED = 105;

 const unsigned short INSTALLATION_ERROR_OTHER = 106;

 readonly attribute unsigned short code;

 readonly attribute DOMString applicationID;

 };

 interface Widget {

 readonly attribute DOMString distributor;

 readonly attribute DOMString distributorEmail;

 readonly attribute DOMString distributorHref;

 readonly attribute DOMString versionName;

 readonly attribute unsigned long long validfor;

 readonly attribute unsigned long long validuntil;

 readonly attribute DOMString author;

 readonly attribute DOMString authorEmail;

 readonly attribute DOMString authorHref;

 readonly attribute DOMString description;

 readonly attribute DOMString id;

 readonly attribute DOMString name;

 readonly attribute DOMString shortName;

 readonly attribute Storage preferences;

 readonly attribute DOMString version;

 readonly attribute unsigned long height;

 readonly attribute unsigned long width;

 void exit();

 void hide();

 boolean isHidden();

 void notify(in NotifySuccessCallback onSuccess, in NotifyErrorCallback onError, in

DOMString title, in optional DOMString shortDescription, in optional DOMString id, in

optional DOMString icon);

 void cancelNotify(in DOMString id);

 void onDestroy();

 void onBackground();

 void onForeground();

 void onStop();

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 306 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 void onStart();

 void deployChild(in DeploymentSuccessCallback onSuccess, in

DeploymentErrorCallback onError, in DOMString childApplicationID, in optional boolean

local);

 };

 [Supplemental, NoInterfaceObject]interface WindowWidget {

 readonly attribute Widget widget;

 };

 Window implements WindowWidget;

};

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 307 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

11. Referred APIs used by webinos

API Summary

Specification Summary

The W3C calendar

module

This W3C API provides access to a user calendaring service.

The W3C contacts

module

This W3C API provides access to a user unified address book.

The WAC devicestatus

module

This WAC API provides access to the information about the device

status. The status information is organised as a tree structure utilising a

vocabulary.

The devicestatus

vocabulary module

The vocabulary that defines the information available in the webinos

device status API.

The WAC

deviceinteraction

module

This WAC API allows applications the capability to access functions that

allow them to interact with the end user.

The W3C

DeviceOrientation

Event specification

This specification defines several new DOM event types that provide

information about the physical orientation and motion of a hosting device.

The W3C File API

This specification provides an API for representing file objects in web

applications, as well as programmatically selecting them and accessing

their data.

The W3C File API:

Writer

This specification defines an API for writing to files from web

applications. This API is designed to be used in conjunction with, and

depends on definitions in, other APIs and elements on the web platform

such as the W3C File API.

The W3C File API:

Directories and System

This specification defines an API to navigate file system hierarchies, and

defines a means by which a user agent may expose sandboxed sections of

a user local filesystem to web applications. It builds on the File Writer

API, which in turn built on the File API, each adding a different kind of

functionality.

The W3C Gallery API

This specification defines an API that provides access to the media items

stored in the device gallery.

http://dev.webinos.org/specifications/draft/calendar.html
http://dev.webinos.org/specifications/draft/calendar.html
http://dev.webinos.org/specifications/draft/contacts.html
http://dev.webinos.org/specifications/draft/contacts.html
http://dev.webinos.org/specifications/draft/devicestatus.html
http://dev.webinos.org/specifications/draft/devicestatus.html
http://dev.webinos.org/specifications/draft/vocabulary.html
http://dev.webinos.org/specifications/draft/vocabulary.html
http://dev.webinos.org/specifications/draft/deviceinteraction.html
http://dev.webinos.org/specifications/draft/deviceinteraction.html
http://dev.webinos.org/specifications/draft/deviceinteraction.html
http://dev.webinos.org/specifications/draft/deviceorientation.html
http://dev.webinos.org/specifications/draft/deviceorientation.html
http://dev.webinos.org/specifications/draft/deviceorientation.html
http://dev.webinos.org/specifications/draft/filereader.html
http://dev.webinos.org/specifications/draft/filewriter.html
http://dev.webinos.org/specifications/draft/filewriter.html
http://dev.webinos.org/specifications/draft/filedirandsystem.html
http://dev.webinos.org/specifications/draft/filedirandsystem.html
http://dev.webinos.org/specifications/draft/gallery.html

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 308 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Specification Summary

The W3C Geolocation

API

This specification defines an API that provides scripted access to

geographical location information associated with the hosting device.

The W3C Media

Capture API

This specification defines an API that provides access to the audio, image

and video capture capabilities of the device.

http://dev.webinos.org/specifications/draft/geolocation.html
http://dev.webinos.org/specifications/draft/geolocation.html
http://dev.webinos.org/specifications/draft/mediacapture.html
http://dev.webinos.org/specifications/draft/mediacapture.html

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 309 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

APIs: The CalendarWrapper module

Webinos API Specifications

30 Jun 2011

Authors

 W3C Working Draft 19 April 2011

 Normative: W3C Calendar API

 WIDL version for webinos created by Christian Fuhrhop
<christian.fuhrhop@fokus.fraunhofer.de>

© 2011 webinos consortium, www.webinos.org.

Abstract

W3C based Calendar interface.

Summary of Methods

Interface Method

ServiceCalendar

Calendar
void findEvents(CalendarEventSuccessCB successCB, CalendarErrorCB errorCB,

CalendarFindOptions options)

CalendarEvent

CalendarRepeatRule

CalendarFindOptions

CalendarEventFilter

CalendarError

http://www.w3.org/TR/2011/WD-calendar-api-20110419/

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 310 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

1. Introduction

This specification provides a wrapper that mandates the use of the W3C Calendar API (W3C

Working draft 14th April).

The Calendar API defines a high-level interface to access Calendar information such as events,

reminders, alarms and other calendar information.

The API itself is designed to be agnostic of any underlying calendaring service sources.

Note that while the W3C version, on which this specification is based on, provides only the

ServiceCalendar to retrieve calendars, in webinos calendars can also be retrieved using the

findServices method of the Service Discovery API.

2. Interfaces

2.1. ServiceCalendar

The ServiceCalendar interface is exposed on the Navigator interface [NAVIGATOR].

 [NoInterfaceObject]

 interface ServiceCalendar {

 readonly attribute Calendar calendar;

 };

Attributes
readonly Calendar calendar

The root node from which the calendar functionality can be accessed.

No exceptions.

This attribute is readonly.

2.2. Calendar

The The Calendar interface provides a method to retrieve calendaring information from a user's

calendar.

 [NoInterfaceObject]

 interface Calendar {

 caller void findEvents (in CalendarEventSuccessCB successCB, in optional

CalendarErrorCB errorCB, in optional CalendarFindOptions options);

 };

Methods
findEvents

Find calendar event items in the calendar based on an CalendarEventFilter object.

Signature

caller void findEvents(in CalendarEventSuccessCB successCB, in optional

CalendarErrorCB errorCB, in optional CalendarFindOptions options);

http://www.w3.org/TR/2011/WD-calendar-api-20110419/

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 311 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

This method takes between one and three arguments. When called, it immediately

returns, and then asynchronously start a find calendar event items process defined as

follows:

If there are any tasks from the device task source in one of the task queues (i.e. an

existing findEvents() operation is still pending a response), and the current method was

invoked with a non-null errorCB argument, dispatch an error event with a

PENDING_OPERATION_ERROR code value.

Search for calendar event items in the calendar according to the calendar item search

processing rules.

If the attempt was successful, dispatch a success event. If the attempt fails, and the

method was invoked with a non-null errorCB argument, this method must dispatch an

error event with the code attribute set according to the type of failure that has occurred.

Parameters

 successCB

o Optional: No.

o Nullable: No

o Type: CalendarEventSuccessCB

o Description: Function to call when the asynchronous operation completes
successfully.

 errorCB

o Optional: Yes.

o Nullable: No

o Type: CalendarErrorCB

o Description: Function to call when the asynchronous operation fails.

 options

o Optional: Yes.

o Nullable: No

o Type: CalendarFindOptions

o Description: The options to apply to the output of this method.

Return value

caller void

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 312 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

2.3. CalendarEvent

The CalendarEvent interface captures a calendar event object.

 [NoInterfaceObject]

 interface CalendarEvent {

 readonly attribute DOMString id;

 attribute DOMString description;

 attribute DOMString? location;

 attribute DOMString? summary;

 attribute DOMString start;

 attribute DOMString? end;

 attribute DOMString? status;

 attribute DOMString? transparency;

 attribute CalendarRepeatRule? recurrence;

 attribute DOMString? reminder;

 };

Attributes
readonly DOMString id

A globally unique identifier for the given CalendarEvent object. Each CalendarEvent

referenced from Calendar must include a non-empty id value.

An implementation must maintain this globally unique resource identifier when a

calendar event is added to, or present within, a Calendar.

An implementation may use an IANA registered identifier format. The value can also be

a non-standard format.

No exceptions.

This attribute is readonly.

DOMString description

A description of the event.

No exceptions.

Code example

 {description: "Meeting with Joe's team"}

DOMString? location

A plain text description of the location of the event.

No exceptions.

Code example

 {location: 'Conf call #+4402000000001'}

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 313 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

DOMString? summary

A summary of the event.

No exceptions.

Code example

 {summary: "Agenda: * Introductions* AoB"}

DOMString start

The start date and time of the event as a valid date or time string.

No exceptions.

Code example

 {start: '2011-03-24T09:00-08:00'} // Event starts on March 24, 2011 @

5pm (UTC)

DOMString? end

The end date and time of the event as a valid date or time string.

No exceptions.

Code example

 {end: '2011-03-24T10:00:00-08:00'} // Event ends on March 24, 2011 @

6pm (UTC)

DOMString? status

An indication of the user's status of the event.

This parameter may be set to one of the following constants:

No exceptions.

Code example

 {status: 'pending'} // Event is awaiting user action

DOMString? transparency

An indication of the display status to set for the event.

This parameter may be set to one of the following constants:

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 314 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

'transparent', 'opaque'.

No exceptions.

Code example

 {freebusy: 'transparent'} // Mark event as transparent in Calendar

CalendarRepeatRule? recurrence

The recurrence or repetition rule for this event

No exceptions.

Code example

 {recurrence: {frequency: 'daily'}} // Event occurs every day and

never expires

Code example
 {recurrence: {frequency: 'weekly', // Event occurs weekly...

 daysInWeek: [2, 4], // ...every Tuesday and Thursday

 expires: '2011-06-11T12:00:00-04:00'}} // Event expires on or before June 11,

2011 @ 4pm (UTC)

Code example
{recurrence: {frequency: 'weekly', // Event occurs weekly...on every

Wednesday

 // (if we say the 'start' attribute is March 24, 2011 @ 2pm (Wednesday) as

 // shown above and no daysInWeek attribute is provided)

 expires: '2011-06-11T11:00:00-05:00'}} // Event expires on or before June 11,

2011 @ 4pm (UTC)

Code example
 {recurrence: {frequency: 'monthly', // Event occurs monthly...

 daysInMonth: [-5], // ...5 days before the end of each month

Code example
{recurrence: {frequency: 'monthly', // Event occurs monthly...on the 24th

day of every month

 // (if we say the 'start' attribute is March 24, 2011 @ 2pm as

 // shown above and no daysInMonth attribute is provided)

 expires: '2011-06-11T20:00:00+04:00'}} // Event expires on or before June 11,

2011 @ 4pm (UTC)

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 315 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Code example
{recurrence: {frequency: 'yearly', // Event occurs yearly...on the 24th

day of every March

 // (if we say the 'start' attribute is March 24, 2011 @ 2pm as

 // shown above and no daysInMonth attribute is provided)

 expires: '2011-06-11T16:00:00+00:00'}} // Event expires on or before June 11,

2011 @ 4pm (UTC)

Code example
 {recurrence: {frequency: 'yearly', // Event occurs yearly...

 daysInMonth: [24], // ...every 24th day...

 monthsInYear: [3, 6], // ...in every March and June

 expires: '2011-06-11T16:00:00Z'}} // Event expires on or before June 11, 2011

@ 4pm (UTC)

Code example
 {recurrence: {frequency: 'yearly', // Event occurs yearly...

 daysInYear: [168], // ...every 168th day of each year

 expires: '2011-06-11T21:45:00+05:45'}} // Event expires on or before June 11,

2011 @ 4pm (UTC)

DOMString? reminder

A reminder for the event.

This attribute can be specified as a positive valid date or time string, denoting a one-time

reminder or as a negative value in milliseconds denoting a relative relationship to the

start time of the calendar event.

A relative reminder is recommended for setting a reminder for recurrent events.

No exceptions.

Code example

 {reminder: '2011-03-24T13:00:00+00:00'} // Remind ONCE on March 24,

2011 @ 1pm (UTC)

Code example

 {reminder: '-3600000'} // Remind 1 hour before every occurrence

of this event

2.4. CalendarRepeatRule

The CalendarRepeatRule interface captures the recurrence of a calendar event item.

 [NoInterfaceObject]

 interface CalendarRepeatRule {

 attribute DOMString? frequency;

 attribute unsigned short? interval;

 attribute DOMString? expires;

 attribute DOMString[] exceptionDates;

 attribute short[] daysInWeek;

 attribute short[] daysInMonth;

 attribute short[] daysInYear;

 attribute short[] weeksInMonth;

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 316 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 attribute short[] monthsInYear;

 };

Attributes
DOMString? frequency

The frequency of the CalendarRepeatRule.

This parameter must be set to one of the following constants: 'daily', 'weekly', 'monthly',

'yearly'.

Additional values must be ignored for this attribute.

No exceptions.

Code example

 {frequency: 'monthly'} // Event repeats on a monthly basis

unsigned short? interval

A positive integer defining how often the recurrence rule must repeat.

For interval N, recurrence rule repeats every Nth frequency. Default interval value is 1,

that is every day for a daily, every week for a weekly, every month for a monthly and

every year for a yearly.

If this parameter is set to null the event item does not have any fixed interval and the

event interal should be derived from the other CalendarRepeatRule attributes.

No exceptions.

Code example

 {interval: 1}

DOMString? expires

The date and time to which the CalendarRepeatRule applies as a valid date or time string.

If this parameter is set to null the event item does not have any fixed expiry date and the

event is scheduled to continue indefintely.

No exceptions.

Code example

 {expires: '2011-08-01T01:00:00+01:00'} // Event repeats until August

1, 2011 @ 12am (UTC)

DOMString [] exceptionDates

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 317 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

One or more dates and times to which the CalendarRepeatRule does not apply as valid

date or time string strings.

If this parameter is set to null the event item does not have any exception dates and/or

times.

No exceptions.

Code example

 {exceptionDates: ['2011-12-22', '2011-12-29']} // Event does not occur

on December 22, 2011 and December 29, 2011

short [] daysInWeek

The day or days of the week for which the CalendarRepeatRule applies. If this attribute is

set to null then the day of the CalendarEvent.start value is used to derive the recurrent

dates.

NOTE: This property only applies to weekly occurrences. If

CalendarRepeatRule.frequency is not set to 'weekly' this property must be ignored.

The possible values are: 0 (Sunday)

1 (Monday)

2 (Tuesday)

3 (Wednesday)

4 (Thursday)

5 (Friday)

6 (Saturday)

No exceptions.

Code example

 {daysInWeek: [0, 6]} // A weekly event repeats every Sunday and

Saturday

short [] daysInMonth

The day or days of the month for which the CalendarRepeatRule applies. If this attribute

is set to null then the day of the month of the CalendarEvent.start value is used to derive

the recurrent dates.

NOTE: This property only applies to monthly occurrences. If

CalendarRepeatRule.frequency is not set to 'monthly' this property must be ignored.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 318 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

The possible values are:

[1..31] (number of days from the first day of the month) [0..-30] (number of days before

the last day of the month)

No exceptions.

Code example

 {daysInMonth: [4, -10]} // A monthly event repeats on the 4th and 10th

to last day of each month.

short [] daysInYear

The day or days of the month for which the CalendarRepeatRule applies. If this attribute

is set to null then the day of the year of the CalendarEvent.start value is used to derive the

recurrent dates.

NOTE: This property only applies to yearly occurrences. If

CalendarRepeatRule.frequency is not set to 'yearly' this property must be ignored.

The possible values are:

[1..365] (number of days from the first day of the year) [0..-364] (number of days before

the last day of the year)

No exceptions.

Code example

 {daysInYear: [262, -102]} // A yearly event repeats on day 262 and 102

days before the last day of each year.

short [] weeksInMonth

The week or weeks of the month for which the CalendarRepeatRule applies. If this

attribute is set to null then the week of the month of the CalendarEvent.start value is used

to derive the recurrent dates.

NOTE: This property only applies to monthly occurrences. If

CalendarRepeatRule.frequency is not set to 'monthly' this property must be ignored. The

possible values are:

[1..4] (number of weeks from the first week of the month) [0..-3] (number of weeks

before the last week of the month)

No exceptions.

Code example

 {weeksInMonth: [1, -1]} // A monthly event repeats on the first and

last week of each month.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 319 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

short [] monthsInYear

The month or months of the year for which the CalendarRepeatRule applies. If this

attribute is set to null then the month of the year of the CalendarEvent.start value is used

to derive the recurrent dates.

NOTE: This property only applies to yearly occurrences. If

CalendarRepeatRule.frequency is not set to 'yearly' this property must be ignored.

The possible values are:

1 (January)

2 (February)

3 (March)

4 (April)

5 (May)

6 (June)

7 (July)

8 (August)

9 (September)

10 (October)

11 (November)

12 (December)

No exceptions.

Code example

 {monthsInYear: [4, 10]} // A yearly event repeats in April and October

each year.

2.5. CalendarFindOptions

The CalendarFindOptions interface describes the options that can be applied to calendar

searching.

 [NoInterfaceObject]

 interface CalendarFindOptions {

 attribute CalendarEventFilter? filter;

 attribute boolean? multiple;

 };

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 320 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Attributes
CalendarEventFilter? filter

A search filter with which to search and initially filter the Calendar database.

No exceptions.

boolean? multiple

A boolean value to indicate whether multiple Calendar objects are returnable as part of

the associated Calendar findEvents() operation.

By default this option is set to true.

No exceptions.

2.6. CalendarEventFilter

The CalendarEventFilter interface captures the searchable parameters for finding calendar event

items.

 [NoInterfaceObject]

 interface CalendarEventFilter : CalendarEvent {

 attribute DOMString startBefore;

 attribute DOMString startAfter;

 attribute DOMString endBefore;

 attribute DOMString endAfter;

 };

Attributes
DOMString startBefore

Search for Calendar Events that start before the time provided as a valid date or time

string..

No exceptions.

DOMString startAfter

Search for Calendar Events that start after the time provided as a valid date or time

string..

No exceptions.

DOMString endBefore

Search for Calendar Events that end before the time provided as a valid date or time

string..

No exceptions.

DOMString endAfter

Search for Calendar Events that end after the time provided as a valid date or time string..

No exceptions.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 321 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

2.9. CalendarError

he CalendarError interface encapsulates all errors in the manipulation of CalendarEvent objects

in the Calendar API.

 [NoInterfaceObject]

 interface CalendarError {

 const unsigned short UNKNOWN_ERROR = 0;

 const unsigned short INVALID_ARGUMENT_ERROR = 1;

 const unsigned short TIMEOUT_ERROR = 2;

 const unsigned short PENDING_OPERATION_ERROR = 3;

 const unsigned short IO_ERROR = 4;

 const unsigned short NOT_SUPPORTED_ERROR = 5;

 const unsigned short PERMISSION_DENIED_ERROR = 20;

 readonly attribute unsigned short code;

 };

Constants

unsigned short UNKNOWN_ERROR

An unknown error occurred.

unsigned short INVALID_ARGUMENT_ERROR

An invalid parameter was provided when the requested method was invoked.

unsigned short TIMEOUT_ERROR

The requested method timed out before it could be completed.

unsigned short PENDING_OPERATION_ERROR

If the user agent is currently waiting for a callback on a current findEvents() operation, as

defined in this specification.

unsigned short IO_ERROR

An error occurred in communication with the underlying implementation that meant the

requested method could not complete.

unsigned short NOT_SUPPORTED_ERROR

The requested method is not supported by the current implementation.

unsigned short PERMISSION_DENIED_ERROR

Access to the requested method was denied at the implementation or by the user.

Attributes
readonly unsigned short code

An error code assigned by an implementation when an error has occurred in Calendar

API processing.

No exceptions.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 322 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

This attribute is readonly.

3. Features

This is the list of URIs used to declare this API's features, for use in the widget config.xml and as

identifier for service type in service discovery functionality. For each URI, the list of functions

covered is provided.

http://www.w3.org/ns/api-perms/calendar.read

Read access to the calendar book.

4. Full WebIDL
module CalendarWrapper {

 [NoInterfaceObject]

 interface ServiceCalendar {

 readonly attribute Calendar calendar;

 };

 [NoInterfaceObject]

 interface Calendar {

 caller void findEvents (in CalendarEventSuccessCB successCB, in optional

CalendarErrorCB errorCB, in optional CalendarFindOptions options);

 };

 [NoInterfaceObject]

 interface CalendarEvent {

 readonly attribute DOMString id;

 attribute DOMString description;

 attribute DOMString? location;

 attribute DOMString? summary;

 attribute DOMString start;

 attribute DOMString? end;

 attribute DOMString? status;

 attribute DOMString? transparency;

 attribute CalendarRepeatRule? recurrence;

 attribute DOMString? reminder;

 };

 [NoInterfaceObject]

 interface CalendarRepeatRule {

 attribute DOMString? frequency;

 attribute unsigned short? interval;

 attribute DOMString? expires;

 attribute DOMString[] exceptionDates;

 attribute short[] daysInWeek;

 attribute short[] daysInMonth;

 attribute short[] daysInYear;

 attribute short[] weeksInMonth;

 attribute short[] monthsInYear;

 };

 [NoInterfaceObject]

 interface CalendarFindOptions {

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 323 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 attribute CalendarEventFilter? filter;

 attribute boolean? multiple;

 };

 [NoInterfaceObject]

 interface CalendarEventFilter : CalendarEvent {

 attribute DOMString startBefore;

 attribute DOMString startAfter;

 attribute DOMString endBefore;

 attribute DOMString endAfter;

 };

 [Callback=FunctionOnly, NoInterfaceObject]

 interface CalendarEventSuccessCB {

 void onSuccess (in sequence<CalendarEvent> eventObjs);

 };

 [Callback=FunctionOnly, NoInterfaceObject]

 interface CalendarErrorCB {

 void onError (in CalendarError error);

 };

 [NoInterfaceObject]

 interface CalendarError {

 const unsigned short UNKNOWN_ERROR = 0;

 const unsigned short INVALID_ARGUMENT_ERROR = 1;

 const unsigned short TIMEOUT_ERROR = 2;

 const unsigned short PENDING_OPERATION_ERROR = 3;

 const unsigned short IO_ERROR = 4;

 const unsigned short NOT_SUPPORTED_ERROR = 5;

 const unsigned short PERMISSION_DENIED_ERROR = 20;

 readonly attribute unsigned short code;

 };

};

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 324 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

APIs: The ContactsWrapper module

Webinos API Specifications

30 Jun 2011

Authors

 W3C Editor's Draft 16 June 2011

 Normative: W3C Contacts API

 WIDL version for webinos created by Christian Fuhrhop
<christian.fuhrhop@fokus.fraunhofer.de>

© 2011 webinos consortium, www.webinos.org.

Abstract

W3C based Contacts interface.

Summary of Methods

Interface Method

ContactError

ServiceContacts

Contacts
void find(DOMString [] fields, ContactFindCB successCB, ContactErrorCB errorCB,

ContactFindOptions options)

Contact

ContactName

ContactField

ContactAddress

ContactOrganization

http://www.w3.org/TR/2011/WD-contacts-api-20110616/

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 325 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Interface Method

ContactFindOptions

ContactFindCB void onsuccess(Contact [] contactObjs)

ContactErrorCB void onerror(ContactError error)

1. Introduction

This specification provides a wrapper that mandates the use of the W3C Contacts API (Editor's

draft 16th June).

The Contacts API defines the high-level interfaces required to obtain read access to a user's

unified address book.

This API includes the following key interfaces:

A Contacts interface, which provides the method needed to access a user's unified address book.

A Contact interface, which captures the individual contact information that can be returned

following a successful read operation.

Note that while the W3C version, on which this specification is based on, provides only the

ServiceContacts to retrieve contacts, in webinos contacts can also be retrieved using the

findServices method of the Service Discovery API.

2. Interfaces

2.1. ContactError

Contacts specific errors.

 [NoInterfaceObject]

 interface ContactError {

 const unsigned short UNKNOWN_ERROR = 0;

 const unsigned short INVALID_ARGUMENT_ERROR = 1;

 const unsigned short TIMEOUT_ERROR = 2;

 const unsigned short PENDING_OPERATION_ERROR = 3;

 const unsigned short IO_ERROR = 4;

 const unsigned short NOT_SUPPORTED_ERROR = 5;

 const unsigned short PERMISSION_DENIED_ERROR = 20;

 readonly attribute unsigned short code;

 };

Constants

unsigned short UNKNOWN_ERROR

An unknown error occurred.

unsigned short INVALID_ARGUMENT_ERROR

An invalid parameter was provided when the requested method was invoked.

http://www.w3.org/TR/2011/WD-contacts-api-20110616/

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 326 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

unsigned short TIMEOUT_ERROR

The requested method timed out before it could be completed.

unsigned short PENDING_OPERATION_ERROR

There is already a task in the device task source.

unsigned short IO_ERROR

An error occurred in communication with the underlying implementation that meant the

requested method could not complete.

unsigned short NOT_SUPPORTED_ERROR

The requested method is not supported by the current implementation.

unsigned short PERMISSION_DENIED_ERROR

Access to the requested information was denied by the implementation or by the user.

Attributes
readonly unsigned short code

An error code assigned by an implementation when an error has occurred in Contacts

API processing. No exceptions.

This attribute is readonly.

2.2. ServiceContacts

The ServiceContacts interface is exposed on the Navigator object [NAVIGATOR]. Its goal is to

provide an access point to the functionality in this specification.

 [NoInterfaceObject]

 interface ServiceContacts {

 readonly attribute Contacts contacts;

 };

Attributes
readonly Contacts contacts

The object through which the contacts functionality can be accessed. No exceptions.

This attribute is readonly.

2.3. Contacts

The Contacts interface exposes a database of contact information that may be retrieved.

 [NoInterfaceObject]

 interface Contacts {

 caller void find (DOMString[] fields, ContactFindCB successCB, optional

ContactErrorCB errorCB, optional ContactFindOptions options);

 };

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 327 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Multiple contact groups can be represented within this unified address book by specifying

consistent categories values as part of individual Contact objects.

Multiple contact groups can be displayed by filtering on the required categories values via the

Contacts find() operation.

The ServiceContacts interface is exposed on the Navigator object [NAVIGATOR].

Its goal is to provide an access point to the functionality in this specification.

Methods
find

Find contacts in the address book according to the find contacts process detailed below.

Signature

caller void find(

 DOMString

 [] fields, ContactFindCB successCB, optional ContactErrorCB

errorCB, optional ContactFindOptions options);

This method takes two, three or four arguments. When called, it starts the following find

contacts process:

Let successCallback be the callback indicated by the method's second argument.

Let errorCallback be the callback indicated by the method's third argument, if any, or null

otherwise.

If successCallback is null, then throw a TypeError (as defined in [WEBIDL]).

If there is a task from the device task source in one of the task queues (e.g. an existing

find() operation is still pending a response), run these substeps:

If errorCallback is not null, let error be a ContactError object whose code attribute has

the value PENDING_OPERATION_ERROR and queue a task to invoke errorCallback

with error as its argument.

Abort this operation.

Return, and run the remaining steps asynchronously.

Let results be the array of Contact objects obtained by searching contacts in the address

book according to the rules defined in Contact Search Processing, or null if the search has

failed.

If results is null, run these substeps:

If errorCallback is not null, let error be a ContactError object whose code attribute has its

value set according to the type of failure that occurred and queue a task to invoke

errorCallback with error as its argument.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 328 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Abort this operation.

Queue a task to invoke successCallback with results as its argument.

Parameters

 fields

o Optional: No.

o Nullable: No

o Type: array

o Description: The search qualifier.

 successCB

o Optional: No.

o Nullable: No

o Type: ContactFindCB

o Description: Function to call when the asynchronous operation completes
successfully.

 errorCB

o Optional: Yes.

o Nullable: No

o Type: ContactErrorCB

o Description: Function to call when the asynchronous operation fails.

 options

o Optional: Yes.

o Nullable: No

o Type: ContactFindOptions

o Description: The options to apply to the output of this method.

Return value

caller void

2.4. Contact

The Contact interface captures the properties of a contact object.

 [NoInterfaceObject]

 interface Contact {

 readonly attribute DOMString id;

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 329 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 attribute DOMString? displayName;

 attribute ContactName name;

 attribute DOMString? nickname;

 attribute ContactField[]? phoneNumbers;

 attribute ContactField[]? emails;

 attribute ContactAddress[]? addresses;

 attribute ContactField[]? ims;

 attribute ContactOrganization[]? organizations;

 attribute Date? revision;

 attribute Date? birthday;

 attribute DOMString? gender;

 attribute DOMString? note;

 attribute ContactField[]? photos;

 attribute DOMString[]? categories;

 attribute ContactField[]? urls;

 attribute DOMString? timezone;

 };

All Contact objects must include all attributes supported by the implementation, regardless of

whether these attributes have been assigned a null value or not. If a supported attribute has not

been assigned a value by the user or the implementation, then this attribute must still be present

in the resulting Contact object and must have a value of null.

Additional attributes may be included according to the provisions detailed in Extended Contact

Properties and Parameters. If an extended attribute is supported by the current implementation

and has not been assigned a value by the user or the implementation, then this extended attribute

must still be present in the resulting Contact object and must have a value of null.

Attributes
readonly DOMString id

A globally unique identifier for the given Contact object.

Each Contact instance must include a non-empty id value.

No exceptions.

This attribute is readonly.

DOMString? displayName

This attribute contains the name of this Contact in a form that is suitable for display to the

user.

Each Contact must include either a displayName or the name attribute.

No exceptions.

ContactName name

This attribute represents the full name of this Contact indicated by the name components

associated with the ContactName object.

Each Contact must include either a displayName or the name attribute.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 330 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

No exceptions.

DOMString? nickname

This attribute contains the nickname (or a casual name) for this Contact.

No exceptions.

ContactField [] phoneNumbers

This attribute captures one or more phone numbers associated with this Contact.

No exceptions.

ContactField [] emails

This attribute represents one or more email addresses associated with this Contact.

No exceptions.

ContactAddress [] addresses

This attribute represents one or more physical addresses associated with this Contact.

No exceptions.

ContactField [] ims

This attribute represents one or more instant messaging identifiers associated with this

Contact.

No exceptions.

ContactOrganization [] organizations

This attribute represents one or more organizations associated with this Contact.

No exceptions.

Date? revision

This attribute contains the timestamp information associated with this Contact, which

represents the last known modification time. If no modification time exists, then this

object contains the timestamp of the object's creation time.

No exceptions.

Date? birthday

This attribute contains birthday of this Contact.

The year value may be set to 0000 when the age of the Contact is private or the year is

not available.

No exceptions.

DOMString? gender

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 331 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

This attribute contains the gender of this Contact. This attribute should have one of the

following values:

male

female

undisclosed

Note however that this attribute may contain a value not listed above.

No exceptions.

DOMString? note

This attribute contains the personal notes (free-text) for this Contact that is managed by

the user of the address book.

No exceptions.

ContactField [] photos

This attribute represents one or more photos associated with this Contact.

The photos must be specified in the value attribute of the ContactField object either by

using a URL to an image resource or base64 encoded string of the image data.

No exceptions.

DOMString [] categories

This attribute contains one or more user-defined categories/tags/labels associated with

this Contact. e.g. "family", "favourite", "cryptozoologists".

No exceptions.

ContactField [] urls

This attribute represents one or more URLs associated with this Contact e.g. personal

web page, blog.

The web resources must be specified using the value attribute of the ContactField object,

and its type field may be set to "blog" or "profile".

No exceptions.

DOMString? timezone

This attribute represents the time zone of this Contact.

It is recommended that names from the public-domain Olson database [TZDB] will be

used as the value of this attribute, but this is not a restriction. For example, a value of

America/New_York indicates the Contact is associated with the variable time zone of the

New York region of the United States, including daylight saving time offsets experienced

in that region.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 332 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

It is also possible to use this attribute to express the timezone as a positive or negative

difference from UTC, in the 24-hour clock, in units of hours and minutes (i.e. +hh:mm).

For example, a value of +05:30 indicates the Contact is associated with a fixed time zone

of GMT+05:30.

No exceptions.

2.5. ContactName

The ContactName interface describes a contact's name.

 [NoInterfaceObject]

 interface ContactName {

 attribute DOMString? formatted;

 attribute DOMString? familyName;

 attribute DOMString? givenName;

 attribute DOMString? middleName;

 attribute DOMString? honorificPrefix;

 attribute DOMString? honorificSuffix;

 };

Attributes
DOMString? formatted

This attribute contains the full name, including all the individual components such as

givenName, middleName, familyName, prefix, suffix as appropriate for the user's

culture, and formatted for display (e.g. Mr. Joe Smith Jr).

No exceptions.

DOMString? familyName

This attribute contains the family name (also referred to as the last name) of this Contact.

No exceptions.

DOMString? givenName

This attribute contains the given name (also referred to as the first name) of this Contact.

No exceptions.

DOMString? middleName

This attribute contains the middle name of this Contact.

No exceptions.

DOMString? honorificPrefix

This attribute contains the honorific prefix (or title) of this Contact. E.g. Mr., Dr., Ms.,

Mrs.

No exceptions.

DOMString? honorificSuffix

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 333 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

This attribute contains the honorific suffix of this Contact. E.g. Jr, III, Sr.

No exceptions.

2.6. ContactField

The ContactField interface is a reusable component that is used to capture contact fields of the

Contact interface that have some modicum of structure.

 [NoInterfaceObject]

 interface ContactField {

 attribute DOMString type;

 attribute DOMString? value;

 attribute boolean pref;

 };

Attributes
DOMString type

This attribute contains the type information for this ContactField and its content varies

subject to the contact property this ContactField is representing. For example, if the

ContactField is representing a phoneNumber property, the type attribute can be set to

home, mobile; if the ContactField is representing the ims property, the type attribute

could be set to xmpp, irc, bbm, etc.

No exceptions.

DOMString? value

This attribute contains the value for this ContactField and its content varies subject to the

contact property this ContactField is representing. For example, if the ContactField is

representing an email, the value attribute could be set to JoeSmith@example.com, and if

the ContactField is representing a url, the value attribute can be set to

http://www.example.org/joesmith, etc.

No exceptions.

boolean pref

This attribute indicates whether this instance of the ContactField is the preferred, or

primary, value for the contact property this ContactField is representing in the Contact

interface. By default, the value is false.

No exceptions.

2.7. ContactAddress

The ContactAddress interface is a reusable component that is used to capture addresses within

the Contact interface.

 [NoInterfaceObject]

 interface ContactAddress {

 attribute boolean pref;

 attribute DOMString? type;

 attribute DOMString? formatted;

 attribute DOMString? streetAddress;

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 334 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 attribute DOMString? locality;

 attribute DOMString? region;

 attribute DOMString? postalCode;

 attribute DOMString? country;

 };

Attributes
boolean pref

This attribute indicates whether this instance of the ContactAddress is the preferred, or

primary, value for the contact. By default, the value is false.

No exceptions.

DOMString? type

This attribute contains the type of address this object is representing (e.g. work, home,

premises, etc).

No exceptions.

DOMString? formatted

This attribute contains the full physical address including street, locality, region,

postalCode, and country as appropriate, and formatted for display.

No exceptions.

DOMString? streetAddress

This attribute contains the street address corresponding to this ContactAddress.

No exceptions.

DOMString? locality

This attribute contains the locality (or city) name corresponding to this ContactAddress.

No exceptions.

DOMString? region

This attribute contains the region (or state/province) name corresponding to this

ContactAddress.

No exceptions.

DOMString? postalCode

This attribute contains the postal code (or zip) corresponding to this ContactAddress.

No exceptions.

DOMString? country

This attribute contains the country name corresponding to this ContactAddress.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 335 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

No exceptions.

2.8. ContactOrganization

The ContactOrganization interface is a reusable component that is used to support contact

organisations within the Contact interface.

 [NoInterfaceObject]

 interface ContactOrganization {

 attribute boolean pref;

 attribute DOMString? type;

 attribute DOMString? name;

 attribute DOMString? department;

 attribute DOMString? title;

 };

Attributes
boolean pref

This attribute indicates whether this instance of the ContactOrganization is the preferred,

or primary, value for the contact. By default, the value is false.

No exceptions.

DOMString? type

This attribute contains the type of organization this object is representing.

No exceptions.

DOMString? name

The name of the organisation.

No exceptions.

DOMString? department

The department within which this Contact works.

No exceptions.

DOMString? title

The job title that the Contact holds inside this organisation.

No exceptions.

2.9. ContactFindOptions

The ContactFindOptions interface describes the options that can be applied to contact searching.

When a ContactFindOptions parameter is provided to the Contacts find() operation, it should be

processed according to the provisions detailed in Options Processing.

 [NoInterfaceObject]

 interface ContactFindOptions {

 attribute DOMString? filter;

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 336 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 attribute boolean? multiple;

 attribute Date updatedSince;

 };

Attributes
DOMString? filter

A string-based search filter which provides a hint to the user agent to facilitate contacts

selection by the user.

No exceptions.

boolean? multiple

A boolean value to indicate whether multiple Contact objects are wanted as part of the

Contacts find() operation. By default this option is set to false.

No exceptions.

Date updatedSince

Return only contact records that have been updated on or after the given time, specified

as an ECMAScript Date object.

This filter is applied to the revision field as defined in Contact.

No exceptions.

2.10. ContactFindCB

This is the wrapper interface for callbacks indicating success of the find() operation.

 [Callback=FunctionOnly, NoInterfaceObject]

 interface ContactFindCB {

 void onsuccess (Contact[] contactObjs);

 };

Methods
onsuccess

Callback on success of a find() operation

Signature

void onsuccess(

 Contact

 [] contactObjs);

Parameters

 contactObjs

o Optional: No.

o Nullable: No

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 337 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

o Type: array

o Description: An array of Contact objects resulting from the given Contacts find()
operation.

Return value

void

2.11. ContactErrorCB

This is the wrapper interface for callbacks indicating failure of the find() operation.

 [Callback=FunctionOnly, NoInterfaceObject]

 interface ContactErrorCB {

 void onerror (ContactError error);

 };

Methods
onerror

Callback on failure of a find() operation

Signature

void onerror(ContactError error);

Parameters

 error

o Optional: No.

o Nullable: No

o Type: ContactError

o Description: The ContactError object capturing the type of the error.

Return value

void

3. Features

This is the list of URIs used to declare this API's features, for use in the widget config.xml and as

identifier for service type in service discovery functionality. For each URI, the list of functions

covered is provided.

http://www.w3.org/ns/api-perms/contacts.read

Read access to the address book.

4. Full WebIDL
module ContactsWrapper {

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 338 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 [NoInterfaceObject]

 interface ContactError {

 const unsigned short UNKNOWN_ERROR = 0;

 const unsigned short INVALID_ARGUMENT_ERROR = 1;

 const unsigned short TIMEOUT_ERROR = 2;

 const unsigned short PENDING_OPERATION_ERROR = 3;

 const unsigned short IO_ERROR = 4;

 const unsigned short NOT_SUPPORTED_ERROR = 5;

 const unsigned short PERMISSION_DENIED_ERROR = 20;

 readonly attribute unsigned short code;

 };

 [NoInterfaceObject]

 interface ServiceContacts {

 readonly attribute Contacts contacts;

 };

 [NoInterfaceObject]

 interface Contacts {

 caller void find (DOMString[] fields, ContactFindCB successCB, optional

ContactErrorCB errorCB, optional ContactFindOptions options);

 };

 [NoInterfaceObject]

 interface Contact {

 readonly attribute DOMString id;

 attribute DOMString? displayName;

 attribute ContactName name;

 attribute DOMString? nickname;

 attribute ContactField[]? phoneNumbers;

 attribute ContactField[]? emails;

 attribute ContactAddress[]? addresses;

 attribute ContactField[]? ims;

 attribute ContactOrganization[]? organizations;

 attribute Date? revision;

 attribute Date? birthday;

 attribute DOMString? gender;

 attribute DOMString? note;

 attribute ContactField[]? photos;

 attribute DOMString[]? categories;

 attribute ContactField[]? urls;

 attribute DOMString? timezone;

 };

 [NoInterfaceObject]

 interface ContactName {

 attribute DOMString? formatted;

 attribute DOMString? familyName;

 attribute DOMString? givenName;

 attribute DOMString? middleName;

 attribute DOMString? honorificPrefix;

 attribute DOMString? honorificSuffix;

 };

 [NoInterfaceObject]

 interface ContactField {

 attribute DOMString type;

 attribute DOMString? value;

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 339 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 attribute boolean pref;

 };

 [NoInterfaceObject]

 interface ContactAddress {

 attribute boolean pref;

 attribute DOMString? type;

 attribute DOMString? formatted;

 attribute DOMString? streetAddress;

 attribute DOMString? locality;

 attribute DOMString? region;

 attribute DOMString? postalCode;

 attribute DOMString? country;

 };

 [NoInterfaceObject]

 interface ContactOrganization {

 attribute boolean pref;

 attribute DOMString? type;

 attribute DOMString? name;

 attribute DOMString? department;

 attribute DOMString? title;

 };

 [NoInterfaceObject]

 interface ContactFindOptions {

 attribute DOMString? filter;

 attribute boolean? multiple;

 attribute Date updatedSince;

 };

 [Callback=FunctionOnly, NoInterfaceObject]

 interface ContactFindCB {

 void onsuccess (Contact[] contactObjs);

 };

 [Callback=FunctionOnly, NoInterfaceObject]

 interface ContactErrorCB {

 void onerror (ContactError error);

 };

};

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 340 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

APIs: The device status module

Webinos Specification

June 2011

© 2011 webinos consortium, www.webinos.org.

Abstract

This document describes the functionality that Webinos devices should implement for retrieving

device status information.

1 - Introduction

This section is INFORMATIVE.

Webinos is fully committed to the use of Open Standards whenever available. The access to

Device Status information is done through the WAC Device Status API.

2 - API

This section is NORMATIVE.

Webinos implementations MUST support WAC Device Status specification. The

implementations MUST also support the vocabulary defined by webinos for accessing the device

status information.

In order to use this API, access to it must be declared in the widget configuration document (i.e.

config.xml). This declaration is done through the features http://wacapps.net/api/devicestatus,

http://wacapps.net/api/devicestatus.deviceinfo or

http://wacapps.net/api/devicestatus.networkinfo.

3 - Security

This section is NORMATIVE.

The implementation MUST NOT enable access to this API by default, but only if the declaration

is present in the widget configuration document through the appropriate feature tag.

Please note that Webinos Security Framework, depending on its configuration and in the widget

level of trust, MAY deny access to this API even if it is declared in the configuration document.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 341 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

4 - WebIDL

This section is INFORMATIVE.

For completeness, this specification includes a copy of the WebIDL declaration included in the

WAC Device Status specification. The referred specification includes all the details needed to

create a conformant implementation as well as a reference to the WAC Vocabulary. Please note

that webinos does not use WAC Vocabulary but a webinos specific one.

DeviceapisDeviceStatusManager Interface

[NoInterfaceObject] interface DeviceapisDeviceStatusManager {

 readonly attribute DeviceStatusManager devicestatus;

};

webinos implements DeviceapisDeviceStatusManager;

DeviceStatusManager Interface

[NoInterfaceObject] interface DeviceStatusManager {

 StringArray getComponents(in DOMString aspect)

 raises(DeviceAPIError);

 boolean isSupported(in DOMString aspect,

 [TreatUndefinedAs=Null] in optional DOMString? property)

 raises(DeviceAPIError);

 PendingOperation getPropertyValue(in PropertyValueSuccessCallback successCallback,

 in ErrorCallback errorCallback,

 in PropertyRef prop)

 raises(DeviceAPIError);

 long watchPropertyChange(in PropertyValueSuccessCallback successCallback,

 in ErrorCallback errorCallback,

 in PropertyRef prop,

 in optional WatchOptions options)

 raises(DeviceAPIError);

 void clearPropertyChange(in unsigned long watchHandler)

 raises(DeviceAPIError);

 };

PropertyRef Interface

[Callback, NoInterfaceObject] interface PropertyRef {

 attribute DOMString component;

 attribute DOMString aspect;

 attribute DOMString property;

 };

WatchOptions Interface

[Callback, NoInterfaceObject] interface WatchOptions {

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 342 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 attribute long minNotificationInterval;

 attribute long maxNotificationInterval;

 attribute long minChangePercent;

 };

DeviceAPIError Interface

 [NoInterfaceObject] interface DeviceAPIError {

 readonly attribute unsigned short code;

 readonly attribute DOMString message;

 const unsigned short UNKNOWN_ERR = 0;

 const unsigned short INDEX_SIZE_ERR = 1;

 const unsigned short DOMSTRING_SIZE_ERR = 2;

 const unsigned short HIERARCHY_REQUEST_ERR = 3;

 const unsigned short WRONG_DOCUMENT_ERR = 4;

 const unsigned short INVALID_CHARACTER_ERR = 5;

 const unsigned short NO_DATA_ALLOWED_ERR = 6;

 const unsigned short NO_MODIFICATION_ALLOWED_ERR = 7;

 const unsigned short NOT_FOUND_ERR = 8;

 const unsigned short NOT_SUPPORTED_ERR = 9;

 const unsigned short INUSE_ATTRIBUTE_ERR = 10;

 const unsigned short INVALID_STATE_ERR = 11;

 const unsigned short SYNTAX_ERR = 12;

 const unsigned short INVALID_MODIFICATION_ERR = 13;

 const unsigned short NAMESPACE_ERR = 14;

 const unsigned short INVALID_ACCESS_ERR = 15;

 const unsigned short VALIDATION_ERR = 16;

 const unsigned short TYPE_MISMATCH_ERR = 17;

 const unsigned short SECURITY_ERR = 18;

 const unsigned short NETWORK_ERR = 19;

 const unsigned short ABORT_ERR = 20;

 const unsigned short TIMEOUT_ERR = 21;

 const unsigned short INVALID_VALUES_ERR = 22;

 const unsigned short NOT_AVAILABLE_ERR = 101;

 };

PropertyValueSucessCallback Interface

 [Callback=FunctionOnly, NoInterfaceObject] interface GetPropertySuccessCallback {

 void onpropertyvalue(in Object value, in PropertyRef property);

 };

ErrorCallback Interface

[Callback=FunctionOnly, NoInterfaceObject] interface ErrorCallback {

 void onerror(in DeviceAPIError error);

};

PendingOperation Interface

[NoInterfaceObject] interface PendingOperation {

 boolean cancel();

 };

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 343 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

References
[DEVICESTATUS]

NORMATIVE: WAC Device Status (Approved Release Version - June 2011) , see

http://specs.wacapps.net/2.0/jun2011/deviceapis/devicestatus.html

[DEVICESTATUSVOC]

INFORMATIVE: WAC Device Status Vocabulary (Approved Release Version - June 2011) , see

http://specs.wacapps.net/2.0/jun2011/deviceapis/vocabulary.html

[WEBINOSVOC]

NORMATIVE: Webinos Device Status Vocabulary

http://specs.wacapps.net/2.0/jun2011/deviceapis/devicestatus.html
http://specs.wacapps.net/2.0/jun2011/deviceapis/vocabulary.html

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 344 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

APIs: Device status vocabulary

Webinos Specification

June 2011

© 2011 webinos consortium, www.webinos.org.

Abstract

This document describes the Webinos Vocabulary for being used by the Device Status API.

1 - Introduction

This section is INFORMATIVE.

Webinos is fully committed to the use of Open Standards whenever available. The vocabulary

chosen is an extension of the WAC Vocabulary.

2 - Aspects

Aspect Properties

Supported

Component

Aliases

Description

Battery batteryLevel, batteryBeingCharged _default

Describes one battery in a device.

See also Delivery Context

Ontology: hard:battery

Camera (**)

model (**), vendor (**), status (**),

resolutionHeight (**),

resolutionWidth (**), maxZoom

(**), minZoom (**), currentZoom

(**), hasFlash (**), flashOn (**)

_active,

_default

It represents a camera of the

device. See also Delivery Context

Ontology: hard:Camera

CellularHardware status _default

It represents a device hardware

that can be used to access to

mobile operator telephony

networks. See also Delivery

Context Ontology:

http://www.w3.org/2007/uwa/editors-drafts/DeliveryContextOntology/LastCallWD-April2009/hardware.html#battery
http://www.w3.org/2007/uwa/editors-drafts/DeliveryContextOntology/LastCallWD-April2009/hardware.html#Camera

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 345 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Aspect Properties

Supported

Component

Aliases

Description

hard:CellularHardware

CellularNetwork

isInRoaming, mcc, mnc,

signalStrength, operatorName,

ipAddress (*), macAddress (*)

_default

It represents a Cellular Network.

See also Delivery Context

Ontology: net:Network

CPU (**) model (**), currentLoad (*) _default

It represents the CPU of the

device. See also Delivery Context

Ontology: hard:CPU

Device imei, model, version, vendor _default

It represents the device. See also

Delivery Context Ontology:

dcn:Device

Display

resolutionHeight, pixelAspectRatio,

dpiY, resolutionWidth, dpiX,

colorDepth

_active,

_default

It represents a visual display on

the device. See also Delivery

Context Ontology: hard:Display

InputDevice (*) type (*) _default

It represents an input device. See

also Delivery Context Ontology:

hard:InputDevice

MemoryUnit
size, removable, availableSize,

volatile (**)
_default

It represents a memory unit used

in the device. See also Delivery

Context Ontology:

hard:MemoryUnit

OperatingSystem language, version, name, vendor
_active,

_default

It represents the device operating

system. See also Delivery Context

Ontology: soft:OperatingSystem

ParentalRating

(*)
name (*), scheme (*), region (*) _default

The parental rating which was set

for this device. Properties

description aligns with the OIPF

R2 Vol5 DAE Spec.

WebRuntime

wacVersion,

supportedImageFormats, version,

name, vendor, webinosVersion (*)

_active,

_default

It represents a Web runtime

capable of executing widgets. See

also Delivery Context Ontology:

http://www.w3.org/2007/uwa/editors-drafts/DeliveryContextOntology/LastCallWD-April2009/hardware.html#CellularHardware
http://www.w3.org/2007/uwa/editors-drafts/DeliveryContextOntology/LastCallWD-April2009/network.html#Network
http://www.w3.org/2007/uwa/editors-drafts/DeliveryContextOntology/LastCallWD-April2009/hardware.html#CPU
http://www.w3.org/2007/uwa/editors-drafts/DeliveryContextOntology/LastCallWD-April2009/deliverycontext.html#Device
http://www.w3.org/2007/uwa/editors-drafts/DeliveryContextOntology/LastCallWD-April2009/hardware.html#Display
http://www.w3.org/2007/uwa/editors-drafts/DeliveryContextOntology/LastCallWD-April2009/hardware.html#inputDevice
http://www.w3.org/2007/uwa/editors-drafts/DeliveryContextOntology/LastCallWD-April2009/hardware.html#MemoryUnit
http://www.w3.org/2007/uwa/editors-drafts/DeliveryContextOntology/LastCallWD-April2009/software.html#OperatingSystem

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 346 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Aspect Properties

Supported

Component

Aliases

Description

web:WebRuntime

WiFiHardware status _default

It represents hardware in a device

that can be used to access to WiFi

networks. See also Delivery

Context Ontology:

hard:WiFiHardware

WiFiNetwork
ssid, signalStrength, networkStatus,

ipAddress (*), macAddress (*)

_active,

_default

It represents a WiFi Network. See

also Delivery Context Ontology:

net:WiFiNetwork

WiredNetwork

(*)

networkStatus (*), ipAddress (*),

macAddress (*)

_active,

_default

It represents a Wired Network.

See also Delivery Context

Ontology: net:WiredNetwork

(*) This aspect/property has been added by Webinos.

(**) This aspect/property has been taken from the BONDI vocabulary.

3 - Properties

For informations about all other properties check the WAC Vocabulary.

Model

ID

model

Associated Aspect

Camera

Description

This property indicates the model of the Camera. See also Delivery Context Ontology.

Delivery Context Ontology Associated Entity

common:model

WebIDL Type

DOMString

http://www.w3.org/2007/uwa/editors-drafts/DeliveryContextOntology/LastCallWD-April2009/web.html#WebRuntime
http://www.w3.org/2007/uwa/editors-drafts/DeliveryContextOntology/LastCallWD-April2009/hardware.html#WiFiHardware
http://www.w3.org/2007/uwa/editors-drafts/DeliveryContextOntology/LastCallWD-April2009/network.html#WiFiNetwork
http://www.w3.org/2007/uwa/editors-drafts/DeliveryContextOntology/LastCallWD-April2009/network.html#WiredNetwork

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 347 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Vendor

ID

vendor

Associated Aspect

Camera

Description

This property indicates the vendor of the camera. See also Delivery Context Ontology.

Delivery Context Ontology Associated Entity

common:vendor

WebIDL Type

DOMString

Status

ID

status

Associated Aspect

Camera

Description

This property indicates the status of the camera. See also Delivery Context Ontology.

Delivery Context Ontology Associated Entity

hard:status

WebIDL Type

DOMString with a value chosen from the following:

(inserire tabella)

Resolution Height

ID

resolutionHeight

Associated Aspect

Camera

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 348 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Description

This property indicates the height resolution of the camera. See also Delivery Context Ontology.

Delivery Context Ontology Associated Entity

common:resolutionHeight

WebIDL Type

unsigned short

Resolution Width

ID

resolutionWidth

Associated Aspect

Camera

Description

This property indicates the width resolution of the camera. See also Delivery Context Ontology.

Delivery Context Ontology Associated Entity

common:resolutionWidth

WebIDL Type

unsigned short

Max Zoom

ID

maxZoom

Associated Aspect

Camera

Description

This property indicates the maximum zoom of the camera.

WebIDL Type

unsigned short

Min Zoom

ID

minZoom

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 349 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Associated Aspect

Camera

Description

This property indicates the minimum zoom of the camera.

WebIDL Type

unsigned short

Current Zoom

ID

currentZoom

Associated Aspect

Camera

Description

This property indicates the current zoom of the camera.

WebIDL Type

unsigned short

Has Flash

ID

hasFlash

Associated Aspect

Camera

Description

This property indicates if the camera has the flash.

WebIDL Type

boolean

Flash On

ID

flashOn

Associated Aspect

Camera

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 350 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Description

This property indicates if the flash of the camera is active.

WebIDL Type

boolean

Model

ID

model

Associated Aspect

CPU

Description

This property indicates the model of the CPU. See also Delivery Context Ontology.

Delivery Context Ontology Associated Entity

common:model

WebIDL Type

DOMString

Current load

ID

currentLoad

Associated Aspect

CPU

Description

This property indicates the current load of the CPU as a percentage. In case of multi processor

CPU, it reports the average.

WebIDL Type

unsigned short

Type

ID

type

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 351 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Associated Aspect

inputDevice

Description

This property indicates the type of input devices. See also Delivery Context Ontology.

WebIDL Type

DOMString with a value chosen from the following:

Value Description

clickWheel See context delivery ontology hard:InputDevice_CLICK_WHEEL

fourWayScroller See context delivery ontology hard:InputDevice_FOUR_WAY_SCROLLER

jogDial See context delivery ontology hard:InputDevice_JOG_DIAL

mouse See context delivery ontology hard:InputDevice_MOUSE

numericKeypad See context delivery ontology hard:InputDevice_NUMERIC_KEYPAD

phoneKeypad See context delivery ontology hard:InputDevice_PHONE_KEYPAD

qwertyKeyboard See context delivery ontology hard:InputDevice_QWERTY_KEYBOARD

stylus See context delivery ontology hard:InputDevice_STYLUS

touchScreen See context delivery ontology hard:InputDevice_TOUCH_SCREEN

trackBall See context delivery ontology hard:InputDevice_TRACK_BALL

Volatile

ID

volatile

Associated Aspect

MemoryUnit

Description

This property indicates if a memory unit is volatile or not. See also Delivery Context Ontology.

Delivery Context Ontology Associated Entity

hard:volatile

http://www.w3.org/2007/uwa/editors-drafts/DeliveryContextOntology/LastCallWD-April2009/hardware.html#InputDevice_CLICK_WHEEL
http://www.w3.org/2007/uwa/editors-drafts/DeliveryContextOntology/LastCallWD-April2009/hardware.html#InputDevice_FOUR_WAY_SCROLLER
http://www.w3.org/2007/uwa/editors-drafts/DeliveryContextOntology/LastCallWD-April2009/hardware.html#InputDevice_JOG_DIAL
http://www.w3.org/2007/uwa/editors-drafts/DeliveryContextOntology/LastCallWD-April2009/hardware.html#InputDevice_MOUSE
http://www.w3.org/2007/uwa/editors-drafts/DeliveryContextOntology/LastCallWD-April2009/hardware.html#InputDevice_NUMERIC_KEYPAD
http://www.w3.org/2007/uwa/editors-drafts/DeliveryContextOntology/LastCallWD-April2009/hardware.html#InputDevice_PHONE_KEYPAD
http://www.w3.org/2007/uwa/editors-drafts/DeliveryContextOntology/LastCallWD-April2009/hardware.html#InputDevice_QWERTY_KEYBOARD
http://www.w3.org/2007/uwa/editors-drafts/DeliveryContextOntology/LastCallWD-April2009/hardware.html#InputDevice_STYLUS
http://www.w3.org/2007/uwa/editors-drafts/DeliveryContextOntology/LastCallWD-April2009/hardware.html#InputDevice_TOUCH_SCREEN
http://www.w3.org/2007/uwa/editors-drafts/DeliveryContextOntology/LastCallWD-April2009/hardware.html#InputDevice_TRACK_BALL

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 352 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

WebIDL Type

boolean

Name

ID

name

Associated Aspect

ParentalRating

Description

Rating value as denoted by scheme, eg. "PG-13".

WebIDL Type

DOMString

Scheme

ID

scheme

Associated Aspect

ParentalRating

Description

Guidance scheme URIs as defined in MPEG-7.

WebIDL Type

DOMString

Region

ID

region

Associated Aspect

ParentalRating

Description

Indicates region.

WebIDL Type

DOMString

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 353 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Webinos Version

ID

webinosVersion

Associated Aspect

WebRuntime

Description

Indicates the version of the webinos specs supported.

WebIDL Type

DOMString

Network Status

ID

networkStatus

Associated Aspect

WiredNetwork

Description

Indicates the status of a wired network.

WebIDL Type

DOMString with a value chosen from the following:

Value Description

connected connected

unconnected unconnected

IP Address

ID

ipAddress

Associated Aspects

CellularNetwork

WiFiNetwork

WiredNetwork

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 354 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Description

IP address of the connection (null if not connected).

WebIDL Type

DOMString

Mac Address

ID

macAddress

Associated Aspects

CellularNetwork

WiFiNetwork

WiredNetwork

Description

Mac address of the connection (null if not available).

WebIDL Type

DOMString

References
[DEVICESTATUSVOC]

NORMATIVE: WAC Device Status Vocabulary (Approved Release Version - June 2011) , see

http://specs.wacapps.net/2.0/jun2011/deviceapis/vocabulary.html

[BONDIDEVICESTATUSVOC]

INFORMATIVE: BONDI Device Status Vocabulary (Release 1.1) , see

http://bondi.omtp.org/1.1/apis/vocabulary.htm

http://specs.wacapps.net/2.0/jun2011/deviceapis/vocabulary.html
http://bondi.omtp.org/1.1/apis/vocabulary.htm

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 355 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

APIs: The device interaction module

Webinos Specification

June 2011

© 2011 webinos consortium, www.webinos.org.

Abstract

This document describes the functionality that Webinos devices should implement for interacting

with the end user through the device.

1 - Introduction

This section is INFORMATIVE.

Webinos is fully committed to the use of Open Standards whenever available. The interaction

with the end-user is done through the WAC Device Interaction API.

2 - API

This section is NORMATIVE.

Webinos implementations MUST support WAC Device Interaction specification.

In order to use this API, access to it must be declared in the widget configuration document (i.e.

config.xml). This declaration is done through the feature

http://wacapps.net/api/deviceinteraction.

3 - Security

This section is NORMATIVE.

The implementation MUST NOT enable access to this API by default, but only if the declaration

is present in the widget configuration document through the appropriate feature tag.

Please note that Webinos Security Framework, depending on its configuration and in the widget

level of trust, MAY deny access to this API even if it is declared in the configuration document.

4 - WebIDL

This section is INFORMATIVE.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 356 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

For completeness, this specification includes a copy of the WebIDL declaration included in the

WAC Device Interaction specification. The referred specification includes all the details needed

to create a conformant implementation.

DeviceapisDeviceInteractionManager Interface

interface DeviceapisDeviceInteractionManager {

 readonly attribute DeviceInteractionManager deviceinteraction;

 };

 Deviceapis implements DeviceapisDeviceInteractionManager;

DeviceInteractionManager Interface

 interface DeviceInteractionManager {

 PendingOperation startNotify(in SuccessCallback successCallback,in ErrorCallback

errorCallback,in long duration)

 raises (DeviceAPIError);

 void stopNotify();

 PendingOperation startVibrate(in SuccessCallback successCallback,

 in ErrorCallback errorCallback,

 in long? duration,

 [TreatUndefinedAs=Null]in optional DOMString? pattern)

 raises (DeviceAPIError);

 void stopVibrate();

 PendingOperation lightOn(in SuccessCallback successCallback,

 in ErrorCallback errorCallback,

 in long duration)

 raises (DeviceAPIError);

 void lightOff();

 PendingOperation setWallpaper(in SuccessCallback successCallback,

 in ErrorCallback errorCallback,

 in DOMString fileName)

 raises (DeviceAPIError);

 };

DeviceAPIError Interface

 [NoInterfaceObject] interface DeviceAPIError {

 readonly attribute unsigned short code;

 readonly attribute DOMString message;

 const unsigned short UNKNOWN_ERR = 0;

 const unsigned short INDEX_SIZE_ERR = 1;

 const unsigned short DOMSTRING_SIZE_ERR = 2;

 const unsigned short HIERARCHY_REQUEST_ERR = 3;

 const unsigned short WRONG_DOCUMENT_ERR = 4;

 const unsigned short INVALID_CHARACTER_ERR = 5;

 const unsigned short NO_DATA_ALLOWED_ERR = 6;

 const unsigned short NO_MODIFICATION_ALLOWED_ERR = 7;

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 357 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 const unsigned short NOT_FOUND_ERR = 8;

 const unsigned short NOT_SUPPORTED_ERR = 9;

 const unsigned short INUSE_ATTRIBUTE_ERR = 10;

 const unsigned short INVALID_STATE_ERR = 11;

 const unsigned short SYNTAX_ERR = 12;

 const unsigned short INVALID_MODIFICATION_ERR = 13;

 const unsigned short NAMESPACE_ERR = 14;

 const unsigned short INVALID_ACCESS_ERR = 15;

 const unsigned short VALIDATION_ERR = 16;

 const unsigned short TYPE_MISMATCH_ERR = 17;

 const unsigned short SECURITY_ERR = 18;

 const unsigned short NETWORK_ERR = 19;

 const unsigned short ABORT_ERR = 20;

 const unsigned short TIMEOUT_ERR = 21;

 const unsigned short INVALID_VALUES_ERR = 22;

 };

SucessCallback Interface

[Callback=FunctionOnly, NoInterfaceObject] interface SuccessCallback {

 void onsuccess();

 };

ErrorCallback Interface

[Callback=FunctionOnly, NoInterfaceObject] interface ErrorCallback {

 void onerror(in DeviceAPIError error);

};

PendingOperation Interface

[NoInterfaceObject] interface PendingOperation {

 boolean cancel();

 };

References
[DEVICEINTERACTION]

NORMATIVE: WAC Device Interaction (Approved Release Version - June 2011) , see

http://specs.wacapps.net/2.0/jun2011/deviceapis/deviceinteraction.html

http://specs.wacapps.net/2.0/jun2011/deviceapis/deviceinteraction.html

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 358 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

APIs: The device orientation module

Webinos Specification

June 2011

© 2011 webinos consortium, www.webinos.org.

Abstract

This document describes the functionality that Webinos devices should implement for retrieving

information about the device orientation and motion.

1 - Introduction

This section is INFORMATIVE.

Webinos is fully committed to the use of Open Standards whenever available. The access to

device orientation information is done through the W3C DeviceOrientation event specification.

2 - API

This section is NORMATIVE.

Webinos implementations MUST support W3C DeviceOrientation Event Specification

In order to use this API, access to it must be declared in the widget configuration document (i.e.

config.xml). This declaration is done through the feature http://www.w3.org/ns/api-

perms/deviceorientation.

Access to this functionality is achieved (as specified by W3C) through two new event types

available in the Window object: deviceorientation and devicemotion.

3 - Security

This section is NORMATIVE.

The implementation MUST NOT enable access to this API by default, but only if the declaration

is present in the widget configuration document through the appropriate feature tag.

Please note that Webinos Security Framework, depending on its configuration and in the widget

level of trust, MAY deny access to this API even if it is declared in the configuration document.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 359 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

4 - WebIDL

This section is INFORMATIVE.

For completeness, this specification includes a copy of the WebIDL declaration included in the

W3C DeviceOrientation Event specification. The referred specification includes all the details

needed to create a conformant implementation.

DeviceOrientation Interface

interface DeviceOrientationEvent : Event {

 readonly attribute double? alpha;

 readonly attribute double? beta;

 readonly attribute double? gamma;

 readonly attribute boolean absolute;

 void initDeviceOrientationEvent(in DOMString type,

 in boolean bubbles,

 in boolean cancelable,

 in double? alpha,

 in double? beta,

 in double? gamma,

 in boolean absolute);

 };

Acceleration Interface

 [Callback, NoInterfaceObject]

 interface Acceleration {

 readonly attribute double? x;

 readonly attribute double? y;

 readonly attribute double? z;

 };

RotationRate Interface

[Callback, NoInterfaceObject]

 interface RotationRate {

 readonly attribute double? alpha;

 readonly attribute double? beta;

 readonly attribute double? gamma;

 };

DeviceMotionEvent Interface

interface DeviceMotionEvent : Event {

 readonly attribute Acceleration? acceleration;

 readonly attribute Acceleration? accelerationIncludingGravity;

 readonly attribute RotationRate? rotationRate;

 readonly attribute double? interval;

 void initAccelerometerEvent(in DOMString type,

 in boolean bubbles,

 in boolean cancelable,

 in Acceleration? acceleration,

 in Acceleration? accelerationIncludingGravity,

 in RotationRate? rotationRate,

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 360 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 in double? interval);

 };

References
[DEVICEORIENTATION]

NORMATIVE: DeviceOrientation Event Specification (W3C Working Draft 28 June 2011) , see

http://www.w3.org/TR/2011/WD-orientation-event-20110628/

http://www.w3.org/TR/2011/WD-orientation-event-20110628/

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 361 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

APIs: The file reader module

Webinos Specification

June 2011

© 2011 webinos consortium, www.webinos.org.

Abstract

This document describes the functionality that Webinos devices should implement for reading

files.

1 - Introduction

This section is INFORMATIVE.

Webinos is fully committed to the use of Open Standards whenever available. The access to File

Reader is done through the W3C File Reader API [FILEREADER].

This module is accessed (as W3C specification mandates) through the blobal object (i.e.

Window).

2 - API

This section is NORMATIVE.

Webinos implementations MUST support W3C File Reader specification [FILEREADER].

In order to use this API, access to it must be declared in the widget configuration document (i.e.

config.xml). This declaration is done through the feature http://www.w3.org/ns/api-

perms/file.read.

3 - Security

This section is NORMATIVE.

The implementation MUST NOT enable access to this API by default, but only if the declaration

is present in the widget configuration document through the appropriate feature tag.

Please note that Webinos Security Framework, depending on its configuration and in the widget

level of trust, MAY deny access to this API even if it is declared in the configuration document.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 362 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

4 - WebIDL

This section is INFORMATIVE.

For completeness, this specification includes a copy of the WebIDL declaration included in the

W3C File Reader specification [FILEREADER]. The referred specification includes all the

details needed to create a conformant implementation.

Blob Interface

 interface Blob {

 readonly attribute unsigned long long size;

 readonly attribute DOMString type;

 //slice Blob into byte-ranged chunks

 Blob slice(in unsigned long long start,

 in unsigned long long length,

 optional DOMString contentType);

 };

File Interface

 interface File : Blob {

 readonly attribute DOMString name;

 readonly attribute DOMString lastModifiedDate;

};

File Reader Interface

[Constructor]

interface FileReader {

 // async read methods

 void readAsArrayBuffer(in Blob blob);

 void readAsBinaryString(in Blob blob);

 void readAsText(in Blob blob, [Optional] in DOMString encoding);

 void readAsDataURL(in Blob blob);

 void abort();

 // states

 const unsigned short EMPTY = 0;

 const unsigned short LOADING = 1;

 const unsigned short DONE = 2;

 readonly attribute unsigned short readyState;

 // File or Blob data

 readonly attribute any result;

 readonly attribute FileError error;

 // event handler attributes

 attribute Function onloadstart;

 attribute Function onprogress;

 attribute Function onload;

 attribute Function onabort;

 attribute Function onerror;

 attribute Function onloadend;

};

FileReader implements EventTarget;

FileReaderSync Interface

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 363 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

[Constructor]

interface FileReaderSync {

 // Synchronously return strings

 // All three methods raise FileException

 ArrayBuffer readAsArrayBuffer(in Blob blob);

 DOMString readAsBinaryString(in Blob blob);

 DOMString readAsText(in Blob blob, [Optional] in DOMString encoding);

 DOMString readAsDataURL(in Blob blob);

};

FileError Interface

 interface FileError {

 // File error codes

 // Found in DOMException

 const unsigned short NOT_FOUND_ERR = 1;

 const unsigned short SECURITY_ERR = 2;

 const unsigned short ABORT_ERR = 3;

 // Added by this specification

 const unsigned short NOT_READABLE_ERR = 4;

 const unsigned short ENCODING_ERR = 5;

 readonly attribute unsigned short code;

 };

FileException Exception

 exception FileException {

 const unsigned short NOT_FOUND_ERR = 1;

 const unsigned short SECURITY_ERR = 2;

 const unsigned short ABORT_ERR = 3;

 const unsigned short NOT_READABLE_ERR = 4;

 const unsigned short ENCODING_ERR = 5;

 unsigned short code;

};

WindowBlobURIMethods Interface

[Supplemental, NoInterfaceObject]

interface WindowBlobURIMethods {

 DOMString createObjectURL(in Blob blob);

 void revokeObjectURL(in DOMString url);

};

Window implements WindowBlobURIMethods;

WorkerUtils implements WindowBlobURIMethods;

References
[FILEREADER]

NORMATIVE: File API (W3C Working Draft 26 September 2010) , see

http://www.w3.org/TR/2010/WD-FileAPI-20101026/

http://www.w3.org/TR/2010/WD-FileAPI-20101026/

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 364 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

APIs: The file writer module

Webinos Specification

June 2011

© 2011 webinos consortium, www.webinos.org.

Abstract

This document describes the functionality that Webinos devices should implement for writing to

files.

1 - Introduction

This section is INFORMATIVE.

Webinos is fully committed to the use of Open Standards whenever available. The access to File

Writer is done through the W3C File Writer API [FILEWRITER].

This module is accessed (as W3C specification mandates) through the global object (i.e.

Window).

2 - API

This section is NORMATIVE.

Webinos implementations MUST support W3C File Writer specification [FILEWRITER].

In order to use this API, access to it must be declared in the widget configuration document (i.e.

config.xml). This declaration is done through the feature http://www.w3.org/ns/api-

perms/file.write.

3 - Security

This section is NORMATIVE.

The implementation MUST NOT enable access to this API by default, but only if the declaration

is present in the widget configuration document through the appropriate feature tag.

Please note that Webinos Security Framework, depending on its configuration and in the widget

level of trust, MAY deny access to this API even if it is declared in the configuration document.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 365 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

4 - WebIDL

This section is INFORMATIVE.

For completeness, this specification includes a copy of the WebIDL declaration included in the

W3C File Writer specification [FILEWRITER]. The referred specification includes all the

details needed to create a conformant implementation.

BlobBuilder Interface

[Constructor]

interface BlobBuilder {

 Blob getBlob (in optional DOMString contentType);

 void append (in DOMString text, in optional DOMString endings) raises

(FileException);

 void append (in Blob data);

 void append (in ArrayBuffer data);

};

FileSaver Interface

[Constructor(in Blob data)]

interface FileSaver {

 void abort () raises (FileException);

 const unsigned short INIT = 0;

 const unsigned short WRITING = 1;

 const unsigned short DONE = 2;

 readonly attribute unsigned short readyState;

 readonly attribute FileError error;

 attribute Function onwritestart;

 attribute Function onprogress;

 attribute Function onwrite;

 attribute Function onabort;

 attribute Function onerror;

 attribute Function onwriteend;

};

File Writer Interface

[NoInterfaceObject]

interface FileWriter : FileSaver {

 readonly attribute unsigned long long position;

 readonly attribute unsigned long long length;

 void write (Blob data) raises (FileException);

 void seek (long long offset) raises (FileException);

 void truncate (unsigned long long size) raises (FileException);

};

FileWriterSync Interface

[NoInterfaceObject]

interface FileWriterSync {

 readonly attribute unsigned long long position;

 readonly attribute unsigned long long length;

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 366 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 void write (Blob data) raises (FileException);

 void seek (long long offset) raises (FileException);

 void truncate (unsigned long long size) raises (FileException);

};

FileError Interface

interface FileError {

 const unsigned short NOT_FOUND_ERR = 1;

 const unsigned short SECURITY_ERR = 2;

 const unsigned short ABORT_ERR = 3;

 const unsigned short NOT_READABLE_ERR = 4;

 const unsigned short ENCODING_ERR = 5;

 const unsigned short NO_MODIFICATION_ALLOWED_ERR = 6;

 const unsigned short INVALID_STATE_ERR = 7;

 const unsigned short SYNTAX_ERR = 8;

 readonly attribute unsigned short code;

};

FileException Exception

exception FileException {

 const unsigned short NOT_FOUND_ERR = 1;

 const unsigned short SECURITY_ERR = 2;

 const unsigned short ABORT_ERR = 3;

 const unsigned short NOT_READABLE_ERR = 4;

 const unsigned short ENCODING_ERR = 5;

 const unsigned short NO_MODIFICATION_ALLOWED_ERR = 6;

 const unsigned short INVALID_STATE_ERR = 7;

 const unsigned short SYNTAX_ERR = 8;

 unsigned short code;

};

References
[FILEWRITER]

NORMATIVE: File API: Writer (W3C Working Draft 19 April 2011) , see

http://www.w3.org/TR/2011/WD-file-writer-api-20110419/

http://www.w3.org/TR/2011/WD-file-writer-api-20110419/

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 367 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

APIs: The file system module

Webinos Specification

June 2011

© 2011 webinos consortium, www.webinos.org.

Abstract

This document describes the functionality that Webinos devices should implement for accessing

file system directories.

1 - Introduction

This section is INFORMATIVE.

Webinos is fully committed to the use of Open Standards whenever available. The access to File

System is done through the W3C File Directories and System API [FILEDIRSYS].

This module is accessed (as W3C specification mandates) through the global object (i.e.

Window).

2 - API

This section is NORMATIVE.

Webinos implementations MUST support W3C File Directories and System API specification

[FILEDIRSYS].

In order to use this API, access to it must be declared in the widget configuration document (i.e.

config.xml). This declaration is done through the feature http://www.w3.org/ns/api-

perms/file.system.

3 - Security

This section is NORMATIVE.

The implementation MUST NOT enable access to this API by default, but only if the declaration

is present in the widget configuration document through the appropriate feature tag.

Please note that Webinos Security Framework, depending on its configuration and in the widget

level of trust, MAY deny access to this API even if it is declared in the configuration document.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 368 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

4 - WebIDL

This section is INFORMATIVE.

For completeness, this specification includes a copy of the WebIDL declaration included in the

W3C File Directories and System API specification [FILEDIRSYS]. The referred specification

includes all the details needed to create a conformant implementation.

Metadata Interface

[NoInterfaceObject]

interface Metadata {

 readonly attribute Date modificationTime;

};

Flags Interface

[NoInterfaceObject]

interface Flags {

 attribute boolean create;

 attribute boolean exclusive;

};

FileSystem Interface

[NoInterfaceObject]

interface FileSystem {

 readonly attribute DOMString name;

 readonly attribute DirectoryEntry root;

};

Entry Interface

[NoInterfaceObject]

interface Entry {

 readonly attribute boolean isFile;

 readonly attribute boolean isDirectory;

 void getMetadata (MetadataCallback successCallback, optional ErrorCallback

errorCallback);

 readonly attribute DOMString name;

 readonly attribute DOMString fullPath;

 readonly attribute FileSystem filesystem;

 void moveTo (DirectoryEntry parent, optional DOMString newName, optional

EntryCallback successCallback, optional ErrorCallback errorCallback);

 void copyTo (DirectoryEntry parent, optional DOMString newName, optional

EntryCallback successCallback, optional ErrorCallback errorCallback);

 DOMString toURL (optional DOMString mimeType);

 void remove (VoidCallback successCallback, optional ErrorCallback

errorCallback);

 void getParent (EntryCallback successCallback, optional ErrorCallback

errorCallback);

};

DirectoryEntry Interface

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 369 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

[NoInterfaceObject]

interface DirectoryEntry : Entry {

 DirectoryReader createReader ();

 void getFile (DOMString path, optional Flags options, optional

EntryCallback successCallback, optional ErrorCallback errorCallback);

 void getDirectory (DOMString path, optional Flags options,

optional EntryCallback successCallback, optional ErrorCallback

errorCallback);

 void removeRecursively (VoidCallback successCallback, optional

ErrorCallback errorCallback);

};

DirectoryReader Interface

[NoInterfaceObject]

interface DirectoryReader {

 void readEntries (EntriesCallback successCallback, optional ErrorCallback

errorCallback);

};

FileEntry Interface

[NoInterfaceObject]

interface FileEntry : Entry {

 void createWriter (FileWriterCallback successCallback, optional ErrorCallback

errorCallback);

 void file (FileCallback successCallback, optional ErrorCallback errorCallback);

};

FileSystemCallback Interface

[NoInterfaceObject, Callback=FunctionOnly]

interface FileSystemCallback {

 void handleEvent (FileSystem filesystem);

};

EntryCallback Interface

[NoInterfaceObject, Callback=FunctionOnly]

interface EntryCallback {

 void handleEvent (Entry entry);

};

EntriesCallback Interface

[NoInterfaceObject, Callback=FunctionOnly]

interface EntriesCallback {

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 370 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 void handleEvent (Entry[] entries);

};

MetadataCallback Interface

[NoInterfaceObject, Callback=FunctionOnly]

interface MetadataCallback {

 void handleEvent (Metadata metadata);

};

FileWriterCallback Interface

[NoInterfaceObject, Callback=FunctionOnly]

interface FileWriterCallback {

 void handleEvent (FileWriter fileWriter);

};

FileCallback Interface

[NoInterfaceObject, Callback=FunctionOnly]

interface FileCallback {

 void handleEvent (File file);

};

VoidCallback Interface

[NoInterfaceObject, Callback=FunctionOnly]

interface VoidCallback {

 void handleEvent ();

};

ErrorCallback Interface

[NoInterfaceObject, Callback=FunctionOnly]

interface ErrorCallback {

 void handleEvent (FileError err);

};

FileSystemSync Interface

[NoInterfaceObject]

interface FileSystemSync {

 readonly attribute DOMString name;

 readonly attribute DirectoryEntrySync root;

};

EntrySync Interface

[NoInterfaceObject]

interface EntrySync {

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 371 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 readonly attribute boolean isFile;

 readonly attribute boolean isDirectory;

 Metadata getMetadata () raises (FileException);

 readonly attribute DOMString name;

 readonly attribute DOMString fullPath;

 readonly attribute FileSystemSync filesystem;

 EntrySync moveTo (DirectoryEntrySync parent, optional DOMString newName)

raises (FileException);

 EntrySync copyTo (DirectoryEntrySync parent, optional DOMString newName)

raises (FileException);

 DOMString toURL (optional DOMString mimeType);

 void remove () raises (FileException);

 DirectoryEntrySync getParent ();

};

DirectoryEntrySync Interface

[NoInterfaceObject]

interface DirectoryEntrySync : EntrySync {

 DirectoryReaderSync createReader () raises (FileException);

 FileEntrySync getFile (DOMString path, optional Flags options) raises

(FileException);

 DirectoryEntrySync getDirectory (DOMString path, optional Flags options) raises

(FileException);

 void removeRecursively () raises (FileException);

};

DirectoryReaderSync Interface

[NoInterfaceObject]

interface DirectoryReaderSync {

 EntrySync[] readEntries () raises (FileException);

};

FileEntrySync Interface

[NoInterfaceObject]

interface FileEntrySync : EntrySync {

 FileWriterSync createWriter () raises (FileException);

 File file () raises (FileException);

};

FileError Interface

interface FileError {

 const unsigned short NOT_FOUND_ERR = 1;

 const unsigned short SECURITY_ERR = 2;

 const unsigned short ABORT_ERR = 3;

 const unsigned short NOT_READABLE_ERR = 4;

 const unsigned short ENCODING_ERR = 5;

 const unsigned short NO_MODIFICATION_ALLOWED_ERR = 6;

 const unsigned short INVALID_STATE_ERR = 7;

 const unsigned short SYNTAX_ERR = 8;

 const unsigned short INVALID_MODIFICATION_ERR = 9;

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 372 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 const unsigned short QUOTA_EXCEEDED_ERR = 10;

 const unsigned short TYPE_MISMATCH_ERR = 11;

 const unsigned short PATH_EXISTS_ERR = 12;

 attribute unsigned short code;

};

FileException Exception

exception FileException {

 const unsigned short NOT_FOUND_ERR = 1;

 const unsigned short SECURITY_ERR = 2;

 const unsigned short ABORT_ERR = 3;

 const unsigned short NOT_READABLE_ERR = 4;

 const unsigned short ENCODING_ERR = 5;

 const unsigned short NO_MODIFICATION_ALLOWED_ERR = 6;

 const unsigned short INVALID_STATE_ERR = 7;

 const unsigned short SYNTAX_ERR = 8;

 const unsigned short INVALID_MODIFICATION_ERR = 9;

 const unsigned short QUOTA_EXCEEDED_ERR = 10;

 const unsigned short TYPE_MISMATCH_ERR = 11;

 const unsigned short PATH_EXISTS_ERR = 12;

 unsigned short code;

};

References
[FILEDIRSYS]

NORMATIVE: File API: Directories and System (W3C Working Draft 19 April 2011) , see

http://www.w3.org/TR/2011/WD-file-system-api-20110419/

http://www.w3.org/TR/2011/WD-file-system-api-20110419/

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 373 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

APIs: The gallery module

Webinos API Specifications

1 Jul 2011

Authors

 W3C Editor's Draft 04 November 2010

 WIDL version for webinos created by Christian Fuhrhop
<christian.fuhrhop@fokus.fraunhofer.de>

© 2011 webinos consortium, www.webinos.org.

Abstract

W3C based Gallery API interface.

Summary of Methods

Interface Method

Gallery

PendingOp find(DOMString [] fields, GalleryFindCB successCB, GalleryErrorCB

errorCB, GalleryFindOptions options)

PendingOp getGalleries(GalleryInfoCB successCB, GalleryErrorCB errorCB)

MediaObject

GalleryInfo

GalleryFindOptions

GalleryFindCB void onSuccess(MediaObject [] mediaObjectObjs)

GalleryInfoCB void onSuccess(GalleryInfo [] galleryInfoObjs)

GalleryErrorCB void onError(GalleryError error)

GalleryError

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 374 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

1. Introduction

This specification provides a wrapper that mandates the use of the W3C Gallery API (Editor's

draft 4 November 2010) that provides access to media gallery located on the device.

The Gallery API defines a high-level interface for accessing media gallery located on the device.

A media gallery is a collection of media objects such as video, audio and image. *

2. Interfaces

2.1. Gallery

The Gallery interface exposes an interface to access media gallery located on the device.

 [NoInterfaceObject] interface Gallery {

 const unsigned short AUDIO_TYPE = 0;

 const unsigned short VIDEO_TYPE = 1;

 const unsigned short IMAGE_TYPE = 2;

 const unsigned short SORT_BY_FILENAME = 3;

 const unsigned short SORT_BY_FILEDATE = 4;

 const unsigned short SORT_BY_MEDIATYPE = 5;

 const unsigned short SORT_BY_TITLE = 6;

 const unsigned short SORT_BY_AUTHOR = 7;

 const unsigned short SORT_BY_ALBUM = 8;

 const unsigned short SORT_BY_DATE = 9;

 const unsigned short SORT_BY_ASCENDING = 10;

 const unsigned short SORT_BY_DESCENDING = 11;

 readonly attribute unsigned long length;

 caller PendingOp find (in DOMString[] fields, in GalleryFindCB successCB, in

optional GalleryErrorCB errorCB, in optional GalleryFindOptions options);

 caller PendingOp getGalleries (in GalleryInfoCB successCB, in optional

GalleryErrorCB errorCB);

};

Code example
 // append images with a title matching 'foobar' from galleries

 // not older than 3 months to the document.body

 var gallery = navigator.service.gallery;

 function getGalleriesSuccess(galleryInfoObjs) {

 var galleries = [];

 for (var i in galleryInfoObjs) {

 if ((new Date().getTime())-galleryInfoObjs[i].createDate 100*60*60*24*3) {

 galleries.push(galleryInfoObjs[i]);

 }

 }

 appendMedia(galleries);

 }

 function appendMedia(galleries) {

 function findSuccess(mediaObjs) {

 var container = document.createElement("div");

 for (var i in mediaObjs) {

 var img = document.createElement("img");

http://dev.w3.org/2009/dap/gallery/

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 375 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 var title = document.createElement("div");

 title.innerHTML = "Title: " + mediaObjs[i].title;

 // create blob URI using window.createObjectURL():

 // http://dev.w3.org/2006/webapi/FileAPI/#creating-revoking

 img.src = createObjectURL(mediaObjs[i]);

 container.appendChild(img);

 container.appendChild(title);

 }

 document.body.appendChild(container);

 }

 function findError() {

 console.log('whoops, something went wrong!');

 }

 gallery.find(['title', 'uri'], findSuccess, findError,

 {filter: 'foobar', galleries: galleries, mediaType: gallery.IMAGE_TYPE

});

 }

 gallery.getGalleries(getGalleriesSuccess);

Constants

unsigned short AUDIO_TYPE

Constant used to identify audio type of media.

unsigned short VIDEO_TYPE

Constant used to identify video type of media.

unsigned short IMAGE_TYPE

Constant used to identify image type of media.

unsigned short SORT_BY_FILENAME

Constant used to identify sort by filename.

unsigned short SORT_BY_FILEDATE

Constant used to identify sort by file date.

unsigned short SORT_BY_MEDIATYPE

Constant used to identify sort by media type.

unsigned short SORT_BY_TITLE

Constant used to identify sort by title.

unsigned short SORT_BY_AUTHOR

Constant used to identify sort by author.

unsigned short SORT_BY_ALBUM

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 376 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Constant used to identify sort by album.

unsigned short SORT_BY_DATE

Constant used to identify sort by date

unsigned short SORT_BY_ASCENDING

Constant used to identify ascending sort order.

unsigned short SORT_BY_DESCENDING

Constant used to identify ascending sort order.

Attributes
readonly unsigned long length

the number of media objects in the gallery.

No exceptions.

This attribute is readonly.

Methods
find

Find media objects in the gallerys according to the find process detailed below.

Signature

caller PendingOp find(in

 DOMString

 [] fields, in GalleryFindCB successCB, in optional

GalleryErrorCB errorCB, in optional GalleryFindOptions options);

This method takes two, three or four arguments. When called, it immediately returns a

PendingOp object, as defined in [CORE-DEVICE], and then asynchronously starts a find

process defined as follows:

1. If there are any tasks from the PendingOp task source in one of the task queues (i.e. an

existing find() operation is still pending a response), and the current method was invoked

with a non-null errorCB argument, dispatch an error event with a

PENDING_OPERATION_ERROR code value.

2. Search for media object in the galleries

3. If the attempt was successful, dispatch a success event. If the attempt fails, and the

method was invoked with a non-null errorCB argument, this method must dispatch an

error event with the code attribute set according to the type of failure that has occurred.

No exceptions.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 377 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Parameters

 fields

o Optional: No.

o Nullable: No

o Type: array

o Description: The search qualifier.

 successCB

o Optional: No.

o Nullable: No

o Type: GalleryFindCB

o Description: Function to call when the asynchronous operation completes

 errorCB

o Optional: Yes.

o Nullable: No

o Type: GalleryErrorCB

o Description: Function to call when the asynchronous operation fails.

 options

o Optional: Yes.

o Nullable: No

o Type: GalleryFindOptions

o Description: The options to apply to the output of this method.

Return value

PendingOperation to cancel the asynchronous call

getGalleries

Retrieve all galleries from available sources(e.g. device local memory, external memory

and even Fliker, Facebook, etc.) according to the retrieve process detailed below.

Signature

caller PendingOp getGalleries(in GalleryInfoCB successCB, in optional

GalleryErrorCB errorCB);

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 378 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

This method takes one or two arguments. When called, it immediately returns a

PendingOp object, as defined in [CORE-DEVICE], and then asynchronously starts a

retrieve process defined as follows:

1. If there are any tasks from the PendingOp task source in one of the task queues (i.e. an

existing find() operation is still pending a response), and the current method was invoked

with a non-null errorCB argument, dispatch an error event with a

PENDING_OPERATION_ERROR code value.

2. retrieve for all galleries

3. If the attempt was successful, dispatch a success event. If the attempt fails, and the

method was invoked with a non-null errorCB argument, this method must dispatch an

error event with the code attribute set according to the type of failure that has

occurred.Find media objects in the gallerys according to the find process detailed below.

No exceptions.

Parameters

 successCB

o Optional: No.

o Nullable: No

o Type: GalleryInfoCB

o Description: Function to call when the asynchronous operation completes

 errorCB

o Optional: Yes.

o Nullable: No

o Type: GalleryErrorCB

o Description: Function to call when the asynchronous operation fails.

Return value

PendingOperation to cancel the asynchronous call

2.2. MediaObject

The Gallery interface exposes an interface to access media gallery located on the device.

[NoInterfaceObject] interface MediaObject : File {

 readonly attribute unsigned long id;

 readonly attribute GalleryInfo gallery;

 readonly attribute DOMString? title;

 readonly attribute DOMString? language;

 readonly attribute DOMString? locator;

 readonly attribute DOMString? contributor;

 readonly attribute DOMString? Creator;

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 379 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 readonly attribute Date? CreateDate;

 readonly attribute DOMString? location;

 readonly attribute DOMString? description;

 readonly attribute DOMString? keyword;

 readonly attribute DOMString? genre;

 readonly attribute unsigned long? rating;

 readonly attribute DOMString? relation;

 readonly attribute DOMString? collection;

 readonly attribute DOMString? copyright;

 readonly attribute DOMString? policy;

 readonly attribute DOMString? publisher;

 readonly attribute DOMString? targetAudience;

 readonly attribute DOMString? fragment;

 readonly attribute DOMString? namedFragment;

 readonly attribute unsigned long? frameSize;

 readonly attribute DOMString? compression;

 readonly attribute unsigned long? duration;

 readonly attribute DOMString? format;

 readonly attribute unsigned long? samplingRate;

 readonly attribute unsigned long? framerate;

 readonly attribute unsigned long? averageBitRate;

 readonly attribute unsigned short? numTracks;

};

Attributes
readonly unsigned long id

Unique id of media object. This id is a unique numeric identifiers of the object. This id is

persistent while the gallery is opened.

No exceptions.

This attribute is readonly.

readonly GalleryInfo gallery

gallery information associated to the media object.

No exceptions.

This attribute is readonly.

readonly DOMString? title

The title of the media object.

No exceptions.

This attribute is readonly.

readonly DOMString? language

The language used in the media object.

No exceptions.

This attribute is readonly.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 380 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

readonly DOMString? locator

The logical address at which the media object can be accessed.

No exceptions.

This attribute is readonly.

readonly DOMString? contributor

The contributor related with the media object. e.g., actor, cameraman, director, singer,

author, artist, etc.

No exceptions.

This attribute is readonly.

readonly DOMString? Creator

The author of the media object.

No exceptions.

This attribute is readonly.

readonly Date? CreateDate

The date and time the media object was originally created.

No exceptions.

This attribute is readonly.

readonly DOMString? location

The description where the media object has been created, developed, recorded, or

otherwise authored.

No exceptions.

This attribute is readonly.

readonly DOMString? description

A free-form text describing the content of the media object.

No exceptions.

This attribute is readonly.

readonly DOMString? keyword

A concept, descriptive phrase or keyword that specifies the topic of the media object.

No exceptions.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 381 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

This attribute is readonly.

readonly DOMString? genre

The category of the content of the media object.

No exceptions.

This attribute is readonly.

readonly unsigned long? rating

The rating value related with the media object.

No exceptions.

This attribute is readonly.

readonly DOMString? relation

The description related with resource that the current media object is related with.

No exceptions.

This attribute is readonly.

readonly DOMString? collection

The name of the collection from which the media object originates or to which it belongs.

No exceptions.

This attribute is readonly.

readonly DOMString? copyright

The copyright statement. Identification of the copyrights holder.

No exceptions.

This attribute is readonly.

readonly DOMString? policy

A policy statement (typically human-readable) associated with the media object.

No exceptions.

This attribute is readonly.

readonly DOMString? publisher

The publisher of a media object.

No exceptions.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 382 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

This attribute is readonly.

readonly DOMString? targetAudience

The classification information related with media object including the issuer of the

classification (e.g., a parental guidance issuing agency, or a targeted geographical

region).

No exceptions.

This attribute is readonly.

readonly DOMString? fragment

A fragment identifier. A fragment is a portion of the resource

No exceptions.

This attribute is readonly.

readonly DOMString? namedFragment

A named fragment identifier.

No exceptions.

This attribute is readonly.

readonly unsigned long? frameSize

The frame size of the media object (e.g., width and height of 720 and 480 units,

respectively).

No exceptions.

This attribute is readonly.

readonly DOMString? compression

The compression type used.

No exceptions.

This attribute is readonly.

readonly unsigned long? duration

The actual duration of the media object.

No exceptions.

This attribute is readonly.

readonly DOMString? format

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 383 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

The MIME type of the media object (e.g., wrapper or bucket media types).

No exceptions.

This attribute is readonly.

readonly unsigned long? samplingRate

The audio sampling rate.

No exceptions.

This attribute is readonly.

readonly unsigned long? framerate

The video frame rate.

No exceptions.

This attribute is readonly.

readonly unsigned long? averageBitRate

The average bit rate.

No exceptions.

This attribute is readonly.

readonly unsigned short? numTracks

The number of tracks of a resource.

No exceptions.

This attribute is readonly.

2.3. GalleryInfo

The GalleryInfo exposes an interface to capture generic metadata information of a gallery.

[NoInterfaceObject] interface GalleryInfo {

 readonly attribute DOMString title;

 readonly attribute Date createdDate;

 readonly attribute DOMString location;

 readonly attribute DOMString[] description;

 readonly attribute DOMString[] supportedMediaObjectType;

};

Attributes
readonly DOMString title

The title of the gallery.

No exceptions.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 384 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

This attribute is readonly.

readonly Date createdDate

The date and time the gallery was originally created.

No exceptions.

This attribute is readonly.

readonly DOMString location

The location the gallery is located on.

No exceptions.

This attribute is readonly.

readonly DOMString [] description

The description of the gallery.

No exceptions.

This attribute is readonly.

readonly DOMString [] supportedMediaObjectType

A list of media object type supported by this gallery.

No exceptions.

This attribute is readonly.

2.4. GalleryFindOptions

The GalleryFindOptions exposes an interface to describe the options that can be applied to media

object searching and displaying.

[NoInterfaceObject] interface GalleryFindOptions {

 attribute DOMString? filter;

 attribute short? mediaType;

 attribute GalleryInfo[]? gallery;

 attribute short? order;

 attribute short? firstSortOption;

 attribute short? secondSortOption;

 attribute Date? startDate;

 attribute Date? endDate;

};

Attributes
DOMString? filter

A DOMString-based search filter with which to search. It's working based on the

metadata of media object.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 385 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

No exceptions.

short? mediaType

Specify the scope of media type for finding the media object

No exceptions.

GalleryInfo [] gallery

Specify the scope of gallery for finding the media object

No exceptions.

short? order

Specify wheither media objects are ordered in ascending or descending order. Default is

an ascending order.

No exceptions.

short? firstSortOption

Primary criteria to order the media object of the gallery.

No exceptions.

short? secondSortOption

Second criteria to order the media object of the gallery.

No exceptions.

Date? startDate

Start date for performing the search. Media object with date previous to that date will not

be returned.

No exceptions.

Date? endDate

End date for performing the search. Media object with date later to that date will not be

returned.

No exceptions.

2.5. GalleryFindCB

find specific success callback.

[Callback=FunctionOnly, NoInterfaceObject] interface GalleryFindCB : PendingOp {

 void onSuccess (in MediaObject[] mediaObjectObjs);

};

Methods
onSuccess

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 386 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Method invoked when the asynchronous call completes successfully

Signature

void onSuccess(in

 MediaObject

 [] mediaObjectObjs);

No exceptions.

Parameters

 mediaObjectObjs

o Optional: No.

o Nullable: No

o Type: array

o Description: The Media Object resulting from the given Gallery find() method.

Return value

void

2.6. GalleryInfoCB

getGalleries specific success callback.

[Callback=FunctionOnly, NoInterfaceObject] interface GalleryInfoCB : PendingOp {

 void onSuccess (in GalleryInfo[] galleryInfoObjs);

};

Methods
onSuccess

Method invoked when the asynchronous call completes successfully

Signature

void onSuccess(in

 GalleryInfo

 [] galleryInfoObjs);

No exceptions.

Parameters

 galleryInfoObjs

o Optional: No.

o Nullable: No

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 387 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

o Type: array

o Description: The GalleryInfo Objects resulting from the given Gallery
getGalleries() method.

Return value

void

2.7. GalleryErrorCB

Gallery API specific error callback.

[Callback=FunctionOnly, NoInterfaceObject] interface GalleryErrorCB : PendingOp {

 void onError (in GalleryError error);

};

Methods
onError

Method invoked when the asynchronous call completes unsuccessfully

Signature

void onError(in GalleryError error);

No exceptions.

Parameters

 error

o Optional: No.

o Nullable: No

o Type: GalleryError

o Description: The Gallery API related error object.

Return value

void

2.8. GalleryError

The GalleryError interface encapsulates all errors in the Gallery API.

[NoInterfaceObject] interface GalleryError {

 const unsigned short UNKNOWN_ERROR = 0;

 const unsigned short INVALID_ARGUMENT_ERROR = 1;

 const unsigned short TIMEOUT_ERROR = 2;

 const unsigned short PENDING_OPERATION_ERROR = 3;

 const unsigned short IO_ERROR = 4;

 const unsigned short NOT_SUPPORTED_ERROR = 5;

 const unsigned short PERMISSION_DENIED_ERROR = 20;

 readonly attribute unsigned short code;

};

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 388 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

Constants

unsigned short UNKNOWN_ERROR

An unknown error occurred.

unsigned short INVALID_ARGUMENT_ERROR

An invalid parameter was provided when the requested method was invoked.

unsigned short TIMEOUT_ERROR

The requested method timed out before it could be completed.

unsigned short PENDING_OPERATION_ERROR

If the user agent is currently waiting for a callback on a current find() operation, as

defined in this specification.

unsigned short IO_ERROR

An error occurred in communication with the underlying implementation that meant the

requested method could not complete.

unsigned short NOT_SUPPORTED_ERROR

The requested method is not supported by the current implementation.

unsigned short PERMISSION_DENIED_ERROR

Attributes
readonly unsigned short code

An error code assigned by an implementation when an error has occurred in Gallery API

processing.

No exceptions.

This attribute is readonly.

3. Features

4. Full WebIDL
module gallery {

 [NoInterfaceObject] interface Gallery {

 const unsigned short AUDIO_TYPE = 0;

 const unsigned short VIDEO_TYPE = 1;

 const unsigned short IMAGE_TYPE = 2;

 const unsigned short SORT_BY_FILENAME = 3;

 const unsigned short SORT_BY_FILEDATE = 4;

 const unsigned short SORT_BY_MEDIATYPE = 5;

 const unsigned short SORT_BY_TITLE = 6;

 const unsigned short SORT_BY_AUTHOR = 7;

 const unsigned short SORT_BY_ALBUM = 8;

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 389 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 const unsigned short SORT_BY_DATE = 9;

 const unsigned short SORT_BY_ASCENDING = 10;

 const unsigned short SORT_BY_DESCENDING = 11;

 readonly attribute unsigned long length;

 caller PendingOp find (in DOMString[] fields, in GalleryFindCB successCB, in

optional GalleryErrorCB errorCB, in optional GalleryFindOptions options);

 caller PendingOp getGalleries (in GalleryInfoCB successCB, in optional

GalleryErrorCB errorCB);

};

[NoInterfaceObject] interface MediaObject : File {

 readonly attribute unsigned long id;

 readonly attribute GalleryInfo gallery;

 readonly attribute DOMString? title;

 readonly attribute DOMString? language;

 readonly attribute DOMString? locator;

 readonly attribute DOMString? contributor;

 readonly attribute DOMString? Creator;

 readonly attribute Date? CreateDate;

 readonly attribute DOMString? location;

 readonly attribute DOMString? description;

 readonly attribute DOMString? keyword;

 readonly attribute DOMString? genre;

 readonly attribute unsigned long? rating;

 readonly attribute DOMString? relation;

 readonly attribute DOMString? collection;

 readonly attribute DOMString? copyright;

 readonly attribute DOMString? policy;

 readonly attribute DOMString? publisher;

 readonly attribute DOMString? targetAudience;

 readonly attribute DOMString? fragment;

 readonly attribute DOMString? namedFragment;

 readonly attribute unsigned long? frameSize;

 readonly attribute DOMString? compression;

 readonly attribute unsigned long? duration;

 readonly attribute DOMString? format;

 readonly attribute unsigned long? samplingRate;

 readonly attribute unsigned long? framerate;

 readonly attribute unsigned long? averageBitRate;

 readonly attribute unsigned short? numTracks;

};

[NoInterfaceObject] interface GalleryInfo {

 readonly attribute DOMString title;

 readonly attribute Date createdDate;

 readonly attribute DOMString location;

 readonly attribute DOMString[] description;

 readonly attribute DOMString[] supportedMediaObjectType;

};

[NoInterfaceObject] interface GalleryFindOptions {

 attribute DOMString? filter;

 attribute short? mediaType;

 attribute GalleryInfo[]? gallery;

 attribute short? order;

 attribute short? firstSortOption;

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 390 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 attribute short? secondSortOption;

 attribute Date? startDate;

 attribute Date? endDate;

};

[Callback=FunctionOnly, NoInterfaceObject] interface GalleryFindCB : PendingOp {

 void onSuccess (in MediaObject[] mediaObjectObjs);

};

[Callback=FunctionOnly, NoInterfaceObject] interface GalleryInfoCB : PendingOp {

 void onSuccess (in GalleryInfo[] galleryInfoObjs);

};

[Callback=FunctionOnly, NoInterfaceObject] interface GalleryErrorCB : PendingOp {

 void onError (in GalleryError error);

};

[NoInterfaceObject] interface GalleryError {

 const unsigned short UNKNOWN_ERROR = 0;

 const unsigned short INVALID_ARGUMENT_ERROR = 1;

 const unsigned short TIMEOUT_ERROR = 2;

 const unsigned short PENDING_OPERATION_ERROR = 3;

 const unsigned short IO_ERROR = 4;

 const unsigned short NOT_SUPPORTED_ERROR = 5;

 const unsigned short PERMISSION_DENIED_ERROR = 20;

 readonly attribute unsigned short code;

};

};

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 391 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

APIs: The geolocation module

Webinos Specification

June 2011

© 2011 webinos consortium, www.webinos.org.

Abstract

This document describes the functionality that Webinos devices should implement for retrieving

geographical information.

1 - Introduction

This section is INFORMATIVE.

Webinos is fully committed to the use of Open Standards whenever available. The access to

Geolocation is done through the W3C Geolocation API [GEOLOCATION].

This module is loaded (as W3C specification mandates) in the Navigator interface with the name

geolocation (i.e. navigator.geolocation).

2 - API

This section is NORMATIVE.

Webinos implementations MUST support W3C Geolocation specification [GEOLOCATION].

In order to use this API, access to it must be declared in the widget configuration document (i.e.

config.xml). This declaration is done through the feature http://www.w3.org/ns/api-

perms/geolocation.

3 - Security

This section is NORMATIVE.

The implementation MUST NOT enable access to this API by default, but only if the declaration

is present in the widget configuration document through the appropriate feature tag.

Please note that Webinos Security Framework, depending on its configuration and in the widget

level of trust, MAY deny access to this API even if it is declared in the configuration document.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 392 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

4 - WebIDL

This section is INFORMATIVE.

For completeness, this specification includes a copy of the WebIDL declaration included in the

W3C Geolocation specification [GEOLOCATION]. The referred specification includes all the

details needed to create a conformant implementation.

Geolocation Instatiation

 [NoInterfaceObject]

 interface NavigatorGeolocation {

 readonly attribute Geolocation geolocation;

 };

 Navigator implements NavigatorGeolocation;

Geolocation Interface

[NoInterfaceObject]

 interface Geolocation {

 void getCurrentPosition(in PositionCallback successCallback,

 in optional PositionErrorCallback errorCallback,

 in optional PositionOptions options);

 long watchPosition(in PositionCallback successCallback,

 in optional PositionErrorCallback errorCallback,

 in optional PositionOptions options);

 void clearWatch(in long watchId);

 };

 [Callback=FunctionOnly, NoInterfaceObject]

 interface PositionCallback {

 void handleEvent(in Position position);

 };

 [Callback=FunctionOnly, NoInterfaceObject]

 interface PositionErrorCallback {

 void handleEvent(in PositionError error);

 };

Position Options

 [Callback, NoInterfaceObject]

 interface PositionOptions {

 attribute boolean enableHighAccuracy;

 attribute long timeout;

 attribute long maximumAge;

 };

Position Interface

 interface Position {

 readonly attribute Coordinates coords;

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 393 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

 readonly attribute DOMTimeStamp timestamp;

 };

Coordinates Interface

interface Coordinates {

 readonly attribute double latitude;

 readonly attribute double longitude;

 readonly attribute double? altitude;

 readonly attribute double accuracy;

 readonly attribute double? altitudeAccuracy;

 readonly attribute double? heading;

 readonly attribute double? speed;

 };

PositionError Interface

interface PositionError {

 const unsigned short PERMISSION_DENIED = 1;

 const unsigned short POSITION_UNAVAILABLE = 2;

 const unsigned short TIMEOUT = 3;

 readonly attribute unsigned short code;

 readonly attribute DOMString message;

 };

References
[GEOLOCATION]

NORMATIVE: Geolocation API Specification (W3C Candidate Recommendation 07 September

2010) , see http://www.w3.org/TR/2010/CR-geolocation-API-20100907/

http://www.w3.org/TR/2010/CR-geolocation-API-20100907/

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 394 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

APIs: The media capture module

Webinos Specification

June 2011

© 2011 webinos consortium, www.webinos.org.

Abstract

This document describes the functionality that Webinos devices should implement for capturing

media.

1 - Introduction

This section is INFORMATIVE.

Webinos is fully committed to the use of Open Standards whenever available. The access to

capture media capability is done through the W3C Media Capture API [MEDIACAPTURE].

2 - API

This section is NORMATIVE.

Webinos implementations MUST support W3C Media Capture API specification

[MEDIACAPTURE].

In order to use this API, access to it must be declared in the widget configuration document (i.e.

config.xml). This declaration is done through the feature http://www.w3.org/ns/api-

perms/mediacapture.

3 - Security

This section is NORMATIVE.

The implementation MUST NOT enable access to this API by default, but only if the declaration

is present in the widget configuration document through the appropriate feature tag.

Please note that Webinos Security Framework, depending on its configuration and in the widget

level of trust, MAY deny access to this API even if it is declared in the configuration document.

4 - WebIDL

This section is INFORMATIVE.

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 395 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

For completeness, this specification includes a copy of the WebIDL declaration included in the

W3C Media Capture API specification [MEDIACAPTURE]. The referred specification includes

all the details needed to create a conformant implementation.

DeviceCapture Interface

[NoInterfaceObject]

interface DeviceCapture {

 readonly attribute Capture capture;

};

Device implements DeviceCapture;

Capture Interface

[Supplemental, NoInterfaceObject]

interface Capture {

 readonly attribute MediaFileData[] supportedImageFormats;

 readonly attribute MediaFileData[] supportedVideoFormats;

 readonly attribute MediaFileData[] supportedAudioFormats;

 PendingOperation captureImage (in CaptureCB successCB, in optional CaptureErrorCB

errorCB, in optional CaptureImageOptions options);

 PendingOperation captureVideo (in CaptureCB successCB, in optional CaptureErrorCB

errorCB, in optional CaptureVideoOptions options);

 PendingOperation captureAudio (in CaptureCB successCB, in optional CaptureErrorCB

errorCB, in optional CaptureAudioOptions options);

};

CaptureCB Interface

[Callback=FunctionOnly, NoInterfaceObject]

interface CaptureCB {

 void onSuccess (in FileList capturedMedia);

};

CaptureErrorCB Interface

[Callback=FunctionOnly, NoInterfaceObject]

interface CaptureErrorCB {

 void onError (in CaptureError error);

};

CaptureError Interface

[NoInterfaceObject]

interface CaptureError {

 const unsigned short CAPTURE_INTERNAL_ERR = 0;

 const unsigned short CAPTURE_APPLICATION_BUSY = 1;

 const unsigned short CAPTURE_INVALID_ARGUMENT = 2;

 const unsigned short CAPTURE_NO_MEDIA_FILES = 3;

 readonly attribute unsigned short code;

};

CaptureImageOptions Interface

 FP7-ICT-2009-5 257103

D3.2: webinos phase I device, network, and server-side API specifications page: 396 of 396

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No 257103.

[NoInterfaceObject]

interface CaptureImageOptions {

 attribute unsigned long limit;

};

CaptureVideoOptions Interface

[NoInterfaceObject]

interface CaptureVideoOptions {

 attribute unsigned long limit;

 attribute float duration;

};

CaptureAudioOptions Interface

[NoInterfaceObject]

interface CaptureAudioOptions {

 attribute unsigned long limit;

};

PendingOperation Interface

[NoInterfaceObject]

interface PendingOperation {

 void cancel ();

};

References
[MEDIACAPTURE]

NORMATIVE: Media Capture API (W3C Working Draft 28 September 2008) , see

http://www.w3.org/TR/2010/WD-media-capture-api-20100928/

http://www.w3.org/TR/2010/WD-media-capture-api-20100928/

