
Distributed programming I (progdis - nov'09)

© A.Lioy - Politecnico di Torino (2009) A-1

Distributed systems' architecture

Antonio Lioy < lioy@polito it >Antonio Lioy < lioy@polito.it >

english version created and modified by

Marco D. Aime < m.aime@polito.it >

Politecnico di Torino

Dip. Automatica e Informatica

Typical application model
 user interface (UI)

manages all I/O with the user

 application logic

 computations required to provide service to the user

 data (rough) data (rough)

 information required by the application

UI logic data

Example (“classic” app.)
#include <stdio.h>

int main ()

{

double vat_percentage = 20;

double price;

char buf[100];

application data

c
e

char buf[100];

printf ("cost? ");

gets (buf);

sscanf (buf, "%lf", &cost);

price = cost * (1 + vat_percentage / 100);

printf ("selling price = %.2lf\n", price);

return 0;

}

application logic

u
se

r
in

te
rf

a
c

Distributed programming I (progdis - nov'09)

© A.Lioy - Politecnico di Torino (2009) A-2

“Classic” computing
 local data (shared / private)

 single address space

 sequential computing over a single CPU

 unique computation flow (exception: interrupt)

node A

f1 ()
private

data

f2 ()
private

data

main ()
private

data

global
data

“Classic” computing: advantages
 ease of programming

 robustness

 good chance of optimisation

“Classic” computing: problems
 data protection from illegal operations

 operations over global data

 also private data are accessible (!)

 partially mitigated with OOP

 low performance low performance

 single CPU, sequential computation

mitigated with multi-CPU systems and concurrent
programming (thread, processes)

 requires physical access to the system (for usage)

 terminals or “console”

mitigated with modem / network connections

Distributed programming I (progdis - nov'09)

© A.Lioy - Politecnico di Torino (2009) A-3

Distributed computing
 only local data (private)

 multiple address spaces

 concurrent computation over different CPUs

 multiple computation flows

node A

prog #1
private

data

node B

prog #2
private

data

node C

prog #3
private

data

Example (distributed app.)
node A = UI

printf ("cost? ");
gets (buf);
sscanf (buf, "%lf", &cost);
…
printf ("price = %.2lf\n", price);

double cost;

char buf[100];
1a) cost= 50.00
1b) price?

node C = data

data
source

double
vat_p = 20;

node B = application logic

price = cost * (1 + vat_p / 100);
double
price;

2) vat_p?

4) 60.00

3) 20.00

Distributed computing: advantages
 high performance

 several CPUs

 good scalability

 increasing the number of CPUs is easier then
increasing the performance of a single CPU

 data protected from illegal operations

 disjoint memory spaces, accessible only by their
respective programs

 network access

 user physical presence not required

Distributed programming I (progdis - nov'09)

© A.Lioy - Politecnico di Torino (2009) A-4

Distributed computing: problems
 programming complexity:

 how the various programs communicate together?

 which data format on the various network nodes?

 need to define (application) protocols

 operations synchronisation may lead to delay and operations synchronisation may lead to delay and
slowing down

 scarce robustness

 higher chance of errors / faults

 hard optimisation

 lack of global view

Software architecture
 collection of software modules (or components)

 … interacting through a well-defined
communication paradigm (or connectors)

 note: communication not always via network (e.g.
IPC within the same node)

M1

M2

M3 M5

M4

Client-server model
 the most diffused method to create distributed

applications

 client and server are two different processes:

 the server provides a generic service

 the client requests the service

 also on the same system

Consider the difference between client and server:
– as hw elements of a computing system
– as processes of a distributed architecture

Distributed programming I (progdis - nov'09)

© A.Lioy - Politecnico di Torino (2009) A-5

The server
 ideally it has been executing ‘‘for ever’’:

 activated at boot time

 activated explicitly by the system administrator

 accepts requests from one or more points:

 TCP o UDP port (concept similar to OSI’s SAP) TCP o UDP port (concept similar to OSI s SAP)

 fixed ports, usually pre-determined

 sends responses relative to the service

 ideally it never stops:

 at shutdown

 explicit action by the system administrator

The client
 activated upon request of a “user”

 sends requests to a server

 waits for the response on a dynamically allocated
port (the port cannot be fixed since there can be
many simultaneous “users”, e.g. two windows of a
web browser)web browser)

 executes a finite number of requests and then
stops

Architecture
 several architecture types can be built by using the

client and server concepts

 client-server (C/S) architecture

 asymmetric architecture

 server position is determined a priori

 peer-to-peer (P2P) architecture

 symmetric architecture

 every node can play both the client and server roles
(simultaneously or at different times)

Distributed programming I (progdis - nov'09)

© A.Lioy - Politecnico di Torino (2009) A-6

Client-server architecture (C/S)
 architecture in which client processes request

services offered by server processes

 advantages:

 simple to design

 simplification of the client

 disadvantages:

 server overload

 communication channel overload

client server
request

service

C/S 2-tier architecture
 the original, classic C/S (e.g. NFS)

 the client interacts directly with the server without
any intermediate step

 typically distributed over either a local or a
geographic scale

 used in small environments (50-100 simultaneous
clients)

 disadvantages:

 low scalability (e.g. as the number of clients
increases, the server performance decreases)

C/S 2-tier: heavy or light client?
 three components (UI, application logic, data) … to

be distributed over two elements (client & server)

 solution 1 = fat client / thin server

 client = UI + application logic

 server = data

 traditional scheme, difficulties with development
(ad-hoc sw) and management (installation,
updates), less security

 solution 2 = thin client / fat server:

 client = UI

 server = application logic + data

 (e.g. the web) heavy on servers, higher security

Distributed programming I (progdis - nov'09)

© A.Lioy - Politecnico di Torino (2009) A-7

C/S 3-tier architecture
 an additional component (or agent) is placed

between client and server, playing various roles:

 filter (e.g. to adapt a legacy mainframe system to a
C-S environment)

 balance workload on the server(s) (e.g. load
balancer with several equivalent servers)balancer with several equivalent servers)

 intelligent services (e.g. to distribute a request to
several different servers, collect results, and reply to
client as a single response)

client serveragent

Examples of 3-tier systems
 to improve (computing) performance:

 agent = load balancer

 server = server farm of homogeneous or equivalent
servers

 to adapt the server to client’s capabilities:

 agent = mediator / broker

 server = set of heterogeneous / not equivalent
servers

The UI and the web
 “traditional” custom UI:

 difficult development, deployment and maintenance

 difficult user training

 the “modern” web UI is split in two:

 standard client-side UI (=browser) standard client side UI (browser)

 standard server-side UI (=server web), easily
programmable

client-side
(user
interaction)

server-side
(application

interface)

Distributed programming I (progdis - nov'09)

© A.Lioy - Politecnico di Torino (2009) A-8

3-tier: web model (I)

static HTML
pages

HTML

HTTP channel

web
browser

web
server

HTTP request command

dynamic
data

HTML

application
server

data

3-tier: web model (II)

static HTML
pages

HTML

HTTP channel

web
browser

web &
application

server

HTTP request query

dataHTML

DBMS

data

3-tier: application example

middle tier

web
browser

file system

data
access

handle

tier 1
tier 2

(front-end)
tier 3

(back-end)
remote
access

middle-tier
server

(exec complex
business rules)

(java)
application

hand-held
device

legacy
application

DB
server

data
access

connect
to

handle
GUI security

mobility

transactions,
sessions, ...

Distributed programming I (progdis - nov'09)

© A.Lioy - Politecnico di Torino (2009) A-9

(b k d)(f t d)

C/S 4-tier architecture
 two components / agents placed between client

and server:

 web agent (manages data presentation)

 component agent (manages application logic)

(back-end)(front-end)

client
data

server
web

agent
component

agent

user
tier

presentation
tier

application
tier

data
tier

How to improve network
performance?

 3/4-tier architectures improve computing
performance … but the front-end is a bottle neck

 how to improve? the service provider has no
control over the network segment between clients
and the front-end

 improvement attempts: improvement attempts:

 statistics on the clients’ sources

 replicate the front-end (one per each network which
clients come from)

 how to direct clients towards the right front-end?

 based on language/domain (e.g. srv.it, srv.fr)

 based on routing (e.g. Akamai modified DNS)

4-tier: Internet e-commerce system

browser
static HTML

pages

requests

HTML

business objects

requests’ requests’’

query &
responses

client
tier

(HCI)
Human

Computer
Interface

HTML

web
tier

manages
the web
pages

component
tier

cooked data

business object available
as “components”:
• distributed communication
• proxy
• legacy system interface
• security
• …

raw data

data
tier

back-end
database

Distributed programming I (progdis - nov'09)

© A.Lioy - Politecnico di Torino (2009) A-10

Client tier: browser or application?
 web browser:

 (P) known to users and managed by users

 (P) standard data & communication (HTTP, HTML)

 (C) uncertain version of protocol and data (shared
minimum?)

 (C) limited performance (interpreter)

 (C) limited functionality (simple graphic interface)

 (C) extensions not always supported:

 applets (Java, Active-X)

 client-side scripts (JavaScript, VBscript)

 plug-ins (Flash, …)

Client tier: browser or application?
 custom / ad-hoc client application:

 (P) rich functionality (=required by the server)

 (P) high performance

 (C) user training

 (C) supported platforms (C) supported platforms

 (C) deployment & maintenance

 (C) support to the users

Peer-to-peer architecture (P2P)
 architecture in which processes may act

simultaneously as client and server

 advantages:

 computing and communication load distributed
among all the processes

 disadvantages:

 difficulties in coordination / control

peer #1 peer #2
C

S

S

C

Distributed programming I (progdis - nov'09)

© A.Lioy - Politecnico di Torino (2009) A-11

P2P computing
 clients evolve from mere service users to

autonomous service providers

 to share resources and run collaborative services

 better exploitation of capabilities at every node (to
decrease the load on servers)

 better exploitation of networks, with direct node
communication (to avoid congestions on the
server uplinks)

P2P architectures
 collaborative computing

 network community for distributed tasks
(e.g. grid computing; open or closed; also for
confidential data or for fixed deadline computation?)

 edge service

 orthogonal services as “enabling factors” to form
P2P communities (e.g. TOIP, Internet fax)

 file sharing

 to share information over the network without
uploading to a server, and leaving it where it is
(problem: the index)

 e.g. Gnutella (gnutella.wego.com), WinMX, Kazaa

Server models
 the internal server architecture heavily influences

the overall performance of the system

 the best model should be selected based on the
specific application problem

 no solution is good for every use (the risk is
choosing an over complicated one)choosing an over-complicated one)

Distributed programming I (progdis - nov'09)

© A.Lioy - Politecnico di Torino (2009) A-12

Iterative server
 if the requested service requires short time, the

server directly provides it

serverinitialize

client

compute

send
request

await
response

await
requests

send
response

compute

Examples of iterative servers
 standard TCP/IP service with short duration:

 daytime (tcp/13 o udp/13) RFC-867

 qotd (tcp/17 o udp/17) RFC-865

 time (tcp/37 o udp/37) RFC-868

 generally, for services with strong load limitations generally, for services with strong load limitations
(one user per time)

 advantages:

 simple to programme

 response speed (when the connection succeeds!)

 disadvantages:

 limited workload

Performance of iterative servers
 does not depend on the number of CPUs

 with TE the CPU time required by server
computation [s] (hypothesis: TE >> TR)

 maximum performance (optimal conditions):

P = 1 / TE services / s

 in case of multiple simultaneous requests, the
ones not served compete again later (but not in
case the request queue has width > 1)

 latency [s] of the service depends on the
workload W>=1 of the node hosting the server:

TE ≤ L ≤ TE x W that is L ~ TE x E(W)

Distributed programming I (progdis - nov'09)

© A.Lioy - Politecnico di Torino (2009) A-13

Concurrent server
 when the service requires long time, the server

starts a “child” sub-process and returns on waiting

server

initialize
parent

client

compute

send
request

await
response

await
request

send
response

create child

compute

terminate

child

Examples of concurrent servers
 the majority of standard TCP/IP services:

 echo (tcp/7 o udp/7) RFC-862

 discard (tcp/9 o udp/9) RFC-863

 chargen (tcp/19 o udp/19) RFC-864

 telnet (tcp/23) RFC-854 telnet (tcp/23) RFC 854

 smtp (tcp/25) RFC-2821

…

 generally, for services with complex computation
or with long and/or unpredictable duration

Concurrent server: analysis
 advantages:

 load ideally unlimited

 disadvantages:

 complex to programme (concurrent programming)

 slow response (child creation TF) slow response (child creation, TF)

 limited maximum load (every child requires RAM,
CPU cycles, disk access cycles, …)

Distributed programming I (progdis - nov'09)

© A.Lioy - Politecnico di Torino (2009) A-14

Performance of concurrent servers
 depends on the number of CPUs (let it be C)

 with TF the CPU time to create a new child [s]

 maximum performance (optimal conditions):

P = C / (TF + TE) services / s

 in case of multiple simultaneous requests, the in case of multiple simultaneous requests, the
ones not served compete again later (but not in
case the request queue has width > 1)

 the service latency depends on the workload W of
the node hosting the server:

(TF + TE) ≤ L ≤ (TF + TE) x W / C s

“Crew” server
 pre-activation of children to improve response time

 also referred as
preforked server

server

create
children

initialize
F1

F2

F3

client

compute

send
request

await
response

await
request

send
response

awake child

compute

go back
spleeping

child

Examples of “crew” servers
 every concurrent services can be implemented

with “crew” server

 for high performance network services:

 with high load (=number of simultaneous clients)

 with low response delay (latency)

 typical examples:

 web server for e-commerce

 DBMS server

Distributed programming I (progdis - nov'09)

© A.Lioy - Politecnico di Torino (2009) A-15

“Crew” server: analysis
 advantages:

 workload ideally unlimited (additional children can
be spawned depending on the load)

 response speed (awake a child faster than create)

 chance to limit the maximum load (only pre-
generated children)

 disadvantages:

 complex to programme (concurrent programming)

 children management (children pool)

 synchronization and concurrency of children access
to shared server resources

Performances of “crew” servers
 similar to concurrent server’s ones, with TF

replaced with the time TA required to activate a
child (usually negligible)

 if additional children can be created (after
exhausting the original pool), the performance is a
combination weighted with the probability G ofcombination weighted with the probability G of
requiring additional children:

P = (1 - G) x [C / (TA + TE)] + G x [C / (TF + TE)]

Concurrent programming
 simultaneous work of multiple computing modules

on the same CPU

 two main models:

 processes

 threads

process P1

PC #1

code #1

mem #1

process P3

PC T#1

code T1

PC #3

code T2

PC T#2

mem #3

process P2

PC #2

code #2

mem #2

Distributed programming I (progdis - nov'09)

© A.Lioy - Politecnico di Torino (2009) A-16

Processes vs. threads (I)
 module activation

 [P] slow

 [T] fast

 module communication

 [P] difficult (requires IPC e g pipes shared [P] difficult (requires IPC, e.g. pipes, shared
memory)

 [T] easy (same address space)

Processes vs. threads (II)
 module protection:

 [P] optimal, both of memory and of CPU cycles

 [T] worst (and the access to shared memory
requires synchronisation and may cause deadlock)

 debug:

 [P] not trivial but possible

 [T] very difficult (cannot replicate the scheduling)

