
HTTP 07/07/2011(dec'09)

© A.Lioy - Politecnico di Torino (2003-09) D-1

The HTTP protocol
(HyperText Transfer Protocol)

Antonio Lioy < lioy@polito it >Antonio Lioy < lioy@polito.it >

english version created by

Marco D. Aime < m.aime@polito.it >

Politecnico di Torino

Dip. Automatica e Informatica

Short history of HTTP
 client-server protocol

 designed for requesting and transmitting HTML
pages (and then web resources in general)

 original HTTP (also known as HTTP/0.9)

 almost only for experimental use

 HTTP/1.0

 first to achieve large diffusion

 still largely used

 HTTP/1.1

 to improve web efficiency

 to improve cache management

The HTTP 1.0 protocol
 HyperText Transfer Protocol

 RFC-1945 (HTTP/1.0)

 default service: TCP/80

 stateless protocol

 the client can close the connection before receiving
the response or parts of it

 channel closed by the server

 8-bit data (i.e. "8-bit clean")

 default alphabet: ISO-8859-1 (= Latin-1)

Stateless connection (HTTP/1.0)

B S
1. connection

B SGET …

2. request

HTML …B S
3. response

B S
4. close

Links
 URL (Uniform Resource Locator)

 regular schemes:

 http telnet ftp gopher file

schema : // user : password @ host : port / path # anchor

 http, telnet, ftp, gopher, file

 irregular schemes:

 news:newsgroup

mailto:postal-address

 base definition in RFC-1738, plus
1959+2255 (LDAP), 2017 (external-body), 2192
(IMAP), 2224 (NFS)

Link evolution
 URLs are physical addresses (using CNAME it is

possible to do something, but limited, at logical
level)

 URN (Uniform Resource Name)
it’s the future evolution, to use logical names,
replication, ...

 URI (Uniform Resource Identifier)

 RFC-3986

 URI = URL + URN

HTTP 07/07/2011(dec'09)

© A.Lioy - Politecnico di Torino (2003-09) D-2

HTTP/1.0 protocol
 ASCII commands with lines terminated by CR+LF

 data can be binary (since the protocol is “8-bit
clean”)

 messages include header + body

 headers are lines beginning with “keyword: ”

 headers are divided from the body by an empty line
(i.e. containing only CR+LF)

HTTP/1.0 methods
 GET uri http-version

requests the resource associated with the specified
URI

 HEAD uri http-version
returns only the headers of the response, not data

 POST uri http-versionPOST uri http version
sends data to the server (inside the body) to be
elaborated by the specified URI

 responses must begin with
http-version status-code [text_comment]

 note that the URI is the resource's

 path (when directly connected to the origin server)

 full URI (when connected to a proxy)

– – – – – – – – – – – (TCP setup) – – – – – – – – – – –

GET method

GET / HTTP/1.0

request

HTTP/1.0 200 OK
Date: Wed, 20 May 1998 09:58:21 GMT
Server: Apache/1.0.0

response

– – – – – – – – – – – (TCP teardown) – – – – – – – – – – –

Server: Apache/1.0.0
Content-Type: text/html
Content-Length: 1534
Last-modified: Fri, 5 May 1998 12:14:23 GMT

<html>
. . .
</html>

– – – – – – – – – – – (TCP setup) – – – – – – – – – – –

HEAD method

HEAD / HTTP/1.0

request

HTTP/1.0 200 OK
D t W d 20 M 1998 09 58 21 GMT

response

– – – – – – – – – – – (TCP teardown) – – – – – – – – – – –

Date: Wed, 20 May 1998 09:58:21 GMT
Server: Apache/1.0.0
Content-Type: text/html
Content-Length: 1534
Last-modified: Fri, 5 May 1998 12:14:23 GMT

– – – – – – – – – – – (TCP setup) – – – – – – – – – – –

POST method

POST /cgi-bin/form.cgi HTTP/1.0
Content-type: text/plain
Content-length: 12

Antonio Lioy

request

– – – – – – – – – – – (TCP teardown) – – – – – – – – – – –

Antonio Lioy

HTTP/1.0 200 OK
Date: Mon, 8 Mar 1999 21:30:24 GMT
Server: Apache/1.2.6
Content-type: text/plain

data received from stdin: Antonio Lioy

response

HTTP manual test (Windows)
 open a command prompt (aka “DOS window”)

 run the following commands:

C:\> telnet
Microsoft Telnet> set localecho
Microsoft Telnet> set crlf
Microsoft Telnet> set logging

 suggestion: if you don’t want to activate logging,
activate the window scrolling to be able to see the
whole server response (Properties – Layout –
Screen buffer size – Height)

gg g
Microsoft Telnet> set logfile mylog.txt
Microsoft Telnet> open server_web 80
GET / HTTP/1.0 <enter>
<enter>

HTTP 07/07/2011(dec'09)

© A.Lioy - Politecnico di Torino (2003-09) D-3

HTTP manual test (*nix)
 install the “netcat” program (if not already

available)

 open a shell

 run the following command:

$ nc server_web 80 > output.txt
G / /1 1GET / HTTP/1.1 <enter>
Host: nome_server_web <enter>
Connection: close <enter>
<enter>

HTTP status code
 every response includes a status code or 3 digits

XYZ

 the first digit (X) provides the major status of the
requested action

 X=1 : informational

 X=2 : success X=2 : success

 X=3 : redirection

 X=4 : client error

 X=5 : server error

 the second and third digits refine the status
indication

Standard status codes for HTTP/1.0

200 OK

201 Created

202 Accepted

204 No Content

400 Bad request

401 Unauthorized

403 Forbidden

404 Not found

301 Moved permanently

302 Moved temporarily

304 Not modified

500 Internal server error

501 Not implemented

502 Bad gateway

503 Service unavailable

Redirection
 if the requested object is not available at the

specified URI, the server can indicate the new URI
by using a response with 3xx code and the header

Location: new-URI

 the browser can:

 connect automatically the client to the new URI, ifconnect automatically the client to the new URI, if
the requested method was GET or HEAD …

… but this is prevented if the method was POST

 to support older browsers (= which does not
understand Redirect) or lazy ones, it is
recommended to send, in the response body, an
HTML page providing the new URL in human
readable format

Header HTTP/1.0 (I)
 general header:

 Date: http-date
 Pragma: no-cache

 request header:

 Authorization: credentials
 From: user-agent-mailbox
 If-Modified-Since: http-date
 304 if the entity has not changed since the date

 Referer: URI
 request following a Redirect

 User-Agent: product

Header HTTP/1.0 (II)
 response header:

 Location: absolute-URI
 Server: product
WWW-Authenticate: challenge

 entity body header:

 Allow: method
 Content-Encoding: x-gzip | x-compress

 Content-Length: length
 Content-Type: MIME-media-type
 Expires: http-date
 Last-Modified: http-date

HTTP 07/07/2011(dec'09)

© A.Lioy - Politecnico di Torino (2003-09) D-4

HTTP date
 three possible formats:

 RFC-822 = Sun, 06 Nov 1994 08:49:37 GMT

 RFC-850 = Sunday, 06-Nov-94 08:49:37 GMT

 asctime = Sun Nov 6 08:49:37 1994

 accept everyone, generate RFC-822 only

 always GMT, never time zone indication

HTTP/0.9 protocol
 simpler

 not described in any RFC

 request: GET URI

 response: entity-body

Problems of HTTP/1.0
 designed for static objects

 size known a-priori

 otherwise data truncation is possible

 impossible to resume an interrupted connection

 designed to request and receive single pages:

 every object requires a separate connection

 one TCP connection for every request:

 TCP setup requires time (3-way handshake)

 TCP slow start requires time

 when the TCP channel is closed, information about
network congestion is lost

 basic cache handling

HTTP/1.1 protocol (I)
 RFC-2616

 persistent connections (default) and pipelining

 improved speed (multiple transactions on the same
channel)

 improved body transmission

 negotiation of format and language for body data

 fragmentation (chunked encoding) for dynamic
pages

 partial transmission

 cache management

mechanisms can be specified through the protocol

 hierarchical proxies

HTTP/1.1 protocol (II)
 virtual server support

multiple logical servers associated with the same IP
address

 new methods:

 PUT, DELETE, TRACE, OPTIONS, CONNECT

 new authentication mechanism (based on digests)
at transport level

HTTP/1.1: virtual host
 with HTTP/1.0 an IP address was needed for every

web server hosted at a node (multi-homed)

 with HTTP/1.1, this is not required anymore:

multiple logical servers associated with the same IP
address

 retrieved through alias in the DNS (CNAME record) retrieved through alias in the DNS (CNAME record)

 the client must specify the desired virtual host by
its FQDN (Fully Qualified Domain Name)

 new header: “Host: FQDN [: port]”

HTTP 07/07/2011(dec'09)

© A.Lioy - Politecnico di Torino (2003-09) D-5

HTTP/1.1: virtual host (example)

host.provider.it IN A 10.1.1.1

www.musica.it IN CNAME host.provider.it

www.libri.it IN CNAME host.provider.it

DNS

(connection to host.provider.it, i.e. IP 10.1.1.1)
GET /index.html HTTP/1.1

Host: www.musica.it

(connection to host.provider.it, i.e. IP 10.1.1.1)
GET /index.html HTTP/1.1

Host: www.libri.it

HTTP

HTTP

HTTP/1.1: persistent connections
 use of a single TCP channel for multiple

request-response interactions

 this is the default behaviour in HTTP/1.1

 who behaves differently should declare it with:
Connection: close

 this header is not end to end but hop by hop this header is not end-to-end but hop-by-hop

 important for proxy and gw

– – – – – – – – – – – (TCP setup) – – – – – – – – – – –

Persistent connections: example

GET / HTTP/1.1
Host: www.polito.it

HTTP/1.1 200 OK
. . .

– – – – – – – – – – – (TCP teardown) – – – – – – – – – – –

GET /favicon.gif HTTP/1.1
Host: www.polito.it
Connection: close

HTTP/1.1 200 OK
Connection: close
. . .

Persistent connections: pros and cons
 pros:

 lower overhead due to channel opening (3-way
handshake) and closing (4-way handshake and its
timeouts)

 better handling of network congestions (the TCP
window is maintained)window is maintained)

 the client can perform request pipelining (the server
must provide responses in the same order)

 CPU saving (on every node in the chain)

 “sweet” evolution to newer HTTP versions (the client
can try a new version, but then use the older one)

 cons:

 server overload (possible denial-of-service)

HTTP/1.1: pipeline
 possible to send multiple requests without waiting

for the corresponding server responses

 optimization of the TCP transmission

 very useful for requesting several elements (of the
same resource) at the same time

 attention: attention:

 they are sequential requests, not parallel ones
(responses will be received in the same order of the
requests)

 in case of errors, you may need to repeat the entire
command

HTTP/1.1: compression
 savings:

 of transmitted bytes

 of time (as perceived by the final user)

 costs:

 CPU on the client

 CPU on the server (with “live” compression)

 but the scarce resource today is bandwidth, not
CPU …

 in HTTP/1.1 implemented as either data encoding or
transmission encoding

HTTP 07/07/2011(dec'09)

© A.Lioy - Politecnico di Torino (2003-09) D-6

Data encoding
 encoding applied to a resource before transmitting

it (property of the data, not of the transmission)

 since HTTP is 8-bit clean, encoding = compression

 useful to preserve the resource’s MIME-type

 headers: Content-Encoding and Accept-Encoding

ibl di possible encodings:

 gzip = GNU zip (RFC-1952) = LZ-77 + CRC-32

 compress = Unix program (adaptive LZW)

 deflate = zlib (RFC-1950) + deflate (RFC-1951)

 identity = no encoding

 default when Content-Encoding is missing

 accept pre-standard names x-gzip & x-compress

Transmission encoding
 specifies the transfer mode for a resource (property

of the transmission, not of the data)

 headers: TE and Transfer-Encoding

 similar to the Content-Transfer-Encoding MIME
header, but (since the channel here is 8-bit clean)
the only real problem is determining the length ofthe only real problem is determining the length of
the message

 values (multiple are possible):

 identity (default)

 gzip, compress, deflate

 chunked (if present, must be the last one)

“chunked” encoding
 useful when the server does not know a-priori the

size of the data to be transferred

 typical case with dynamic servers (e.g. ASP, PHP,
JSP)

 the response is fragmented in parts, called
“chunks”chunks

 less important in HTTP/1.0 (implicit end of data at
channel closing), but protocol less efficient

“chunked” encoding: syntax
 syntax (of the body):

*chunk
last-chunk
*(entity-header CR LF)
CR LF

 every chunk:
chunk-size [chunk-extensions] CR LF
chunk-data CR LF

 size in hex, the last chunk has size=0

 note: "*" means zero or more repetitions of the
following object

“chunked” encoding: example
...

Transfer-Encoding: chunked CRLF

CRLF

6 CR LF
<html>
CRLF

chunk n.1

18 CRLF
<body>CIAO</body></html>
CRLF

0 CRLF
CRLF
CRLF

(resulting body)
<html><body>CIAO</body></html>

chunk n.2

chunk n.3 (last)

CSS / PNG / HTTP-1.1 and performance
 CSS simplifies HTML (and thus reduces its size)

 PNG has better compression than GIF

 e.g. 12% saving over the 40 images of the test

 complex impact of HTTP-1.1: persistent
connections, pipelining, compression

HTTP 07/07/2011(dec'09)

© A.Lioy - Politecnico di Torino (2003-09) D-7

Test HTTP 1.0 vs. 1.1
 test by Nielsen, Gettys et al (W3C)

 test page:

 HTML size = 40 KB

 contains 43 images in-line (total 130 KB)

 test including 44 GETs (one per each object) in
various modes:

 HTTP/1.0 with 4 simultaneous connections

 HTTP/1.1 with 1 persistent connection

 HTTP/1.1 pipeline with 1 persistent connection

 HTTP/1.1 pipeline + compression with 1 persistent
connection

www.w3c.rl.ac.uk/pastevents/RALSymposium98/Talks/br0.html

Results of the test HTTP 1.0 vs. 1.1
WAN first-time retrieval against Apache server

559 6,14

400

500

600

4

5

6

7TCP packets

time (s)

182
221

309

2,112,23

4,09

0

100

200

300

HTTP/1.0 HTTP/1.1 HTTP/1.1
pipelined

HTTP/1.1
pipelined w.
compression

0

1

2

3

4

HTTP/1.1: PUT method
 PUT uri http-version

 the body of the request is a new resource to be
stored by the server at the specified URI

 the body of the request is a new version of a
resource to replace the one specified by the URI

 responses: 201 (Created) 200 (OK) or 204 (No responses: 201 (Created), 200 (OK) or 204 (No
content)

 example:
PUT /avviso.txt HTTP/1.1
Host: lioy.polito.it
Content-Type: text/plain
Content-Length: 40

On 31/5/2007 there will be no lesson.

The “100 Continue” code
 inefficient to transmit a large request body if the

server will deny the request before processing it:

 e.g. unauthorised user or unsupported method

 typically relative to PUT and POST

 the client asks an explicit confirmation before
transmitting the request bodytransmitting the request body

PUT /voti.pdf HTTP/1.1
Host: www.abc.com
Expect: 100-continue

HTTP/1.1 100 Continue
. . . voti.pdf ...

HTTP/1.1 200 OK

HTTP/1.1: DELETE method
 DELETE uri http-version

 requests removal of the resource at the specified
URI

 no guarantee of actual removal, even with OK

 responses:

 200 (OK) if executed + body with details

 202 (Accepted) if removal requires manual decision

 204 (No content) if executed, but without details

 example:

DELETE voti.html HTTP/1.1
Host: lioy.polito.it
Content-Length: 0

HTTP/1.1: TRACE method
 TRACE uri http-version

 asks to receive back a copy of the original request

 the request is encapsulated in the response body
with type MIME "message/http"

 the “Via” request headers (added by proxies and
gateways) allow tracing the connection atgateways) allow tracing the connection at
application level

 the “Max-Forwards” request header allows limiting
the number of traversed proxies (useful in case of
loops)

HTTP 07/07/2011(dec'09)

© A.Lioy - Politecnico di Torino (2003-09) D-8

TRACE method: example

HTTP/1.1 200 OK
Date: Sun, 20 May 2007 21:29:05 GMT

TRACE / HTTP/1.1
Host: www.polito.it S

Server: Apache
Transfer-Encoding: chunked
Content-Type: message/http

29
TRACE / HTTP/1.1
Host: www.polito.it

0

C

HTTP/1.1: OPTIONS method
 OPTIONS uri http-version

 asks for the options supported by the server

 only general options if URI=*, otherwise the general
ones + the ones specific to the URI (e.g. languages
in which the resource is available)

 the “Max Forwards: N” request header allows the Max-Forwards: N request header allows
obtaining the options supported by the N-1
traversed proxy rather than by the origin server

OPTIONS method: example

OPTIONS / HTTP/1.1
Host: www.abc.com S

HTTP/1.1 200 OK
Date: Sun, 20 May 2007 21:51:25 GMT
Server: Apache/1.3.31 (Unix)
Content-Length: 0
Allow: GET, HEAD, OPTIONS, TRACE

C

HTTP/1.1: CONNECT method
 reserved for use with proxies able to handle secure

tunnels (e.g. SSL)

Partial transmission
 useful when resuming interrupted transfers

 server headers:

 Accept-Ranges: none | bytes

 Content-Range: bytes start–stop/total
(total=* if the total size is not known)

 client headers:

 Range: range1, range2, …, rangeN

 possible ranges:

 start–stop (interval, including the boundaries)

 –lastN (the last lastN byte)

 startByte– (from startByte up to the end)

Entity tag (Etag)
 “opaque” identifier used in place of the

modification date to know if an entity has changed

 inserted by servers into the response header with:
Etag: [W/] “hex_string”

 equal tags imply:

 (strong Etag) identical objects (same bytes) (strong Etag) identical objects (same bytes)

 (weak Etag) equivalent objects (same effect)

 values used by clients with the request headers:

 If-Match (e.g. update an old version with PUT only if
not already updated)

 If-None-Match (e.g. GET of a new version)

HTTP 07/07/2011(dec'09)

© A.Lioy - Politecnico di Torino (2003-09) D-9

HTTP/1.1 request headers (I)
 Accept: media-range [; q=qualityValue] , …

 accepted data formats

 e.g. Accept: image/jpeg, image/*;q=0.5

 Accept-Charset: charset [; q=qualityValue] , …

 accepted character sets

 Accept-Encoding: cont-enc [; q=qualityValue] , …

 accepted content encodings

 Accept-Language: language [; q=qualityValue] , …

 accepted languages

 e.g. Accept-Language: it, en-gb;q=0.8, en;q=0.7

HTTP/1.1 request header (II)
 Authorization: credentials

 credentials as response to an authentication request
received from the origin server

 Expect: expected-behaviour , …

 the server replies with 417 if it does not understand

 From: rfc822-address

 especially important to contact who has activated a
robot that is causing problems

 privacy/spamming problems

 Host: hostname [: port]

 virtual host to be contacted (default port: 80)

HTTP/1.1 request header (III)
 If-Match: etagValue , …

 apply the method only if the resource corresponds to
one of the specified tags

 If-Modified-Since: http-date

 apply the method only if the resource has been
modified after the specified datemodified after the specified date

 If-None-Match: etagValue , …

 apply the method only if the resource does not
correspond to any of the specified tags

 If-Range: etagValue | http-date

 send the whole resource if it has changed, only the
specified portion otherwise (used with Range: …)

HTTP/1.1 request header (IV)
 If-Unmodified-Since: http-date

 apply the method only if the resource has not been
modified after the specified date

 Max-Forwards: max-num-forwards

 used with TRACE and OPTIONS to identify the
intermediate node that should respondintermediate node that should respond

max-num-forwards decremented by every node

 Proxy-Authorization: credentials

 credentials as response to an authentication request
received from a proxy

HTTP/1.1 request header (V)
 Range: interval

 for receiving only the specified interval

 offsetFrom–offsetTo (e.g. bytes=500–999)

 –lastBytes (e.g. bytes=–500)

 Referer: absoluteURI | relativeURI

 URI of the page that has generated the current
request

 this field is missing for URIs inserted by keyboard

 TE: [trailers] [transf-enc [; q=qualityValue]] , …

 chunk trailers and acceptable transfer encodings

 User-Agent: product-name

 identifies the client’s software implementation

 Accept-Ranges: bytes | none

 specifies if the server accepts partial downloads

 Age: ageValue

 specifies the seconds elapsed since the resource
was first inserted into the cache

HTTP/1.1 response header (I)

meaningful only for proxies, gateways or servers
with cache

 ETag: entity-tag

 opaque unique identifier of the requested resource

 Location: absolute-URI

 signals a redirection to the specified URI

HTTP 07/07/2011(dec'09)

© A.Lioy - Politecnico di Torino (2003-09) D-10

 Proxy-Authenticate: challenge

 challenge sent by a proxy to authenticate the client

 Retry-After: http-date | seconds

 in case of server unavailability

 Server: product-name

HTTP/1.1 response header (II)

 identifies the responder’s software implementation

 Vary: * | request-header , ...

 identifies the request fields on which the response
depends (and thus the validity of the copy in cache)

 WWW-Authenticate: challenge

 challenge sent by the origin server to authenticate
the client

HTTP/1.1 general header (I)
 Cache-Control: req-cache-dir | res-cache-dir , …

 cache control in the request and the response

 directives sent by client and server towards proxies

 Connection: close

 for non-persistent connections (with server or proxy)

 Date: http-date

 transmission date for the request or the response

 Pragma: no-cache

 for compatibility with HTTP/1.0

 in HTTP/1.1, Cache-Control is preferred

Request-cache-directive (I)
 no-cache

 I want a response directly from the origin server

 no-store

 do not cache (totally or partially) both the request
and the response

 max-age=seconds

 I want a response not older than X s

 max-stale [=seconds]

 I also accept responses that have expired (for no
more than X s)

 min-fresh=seconds

 I want a response that will be still valid after X s

Request-cache-directive (II)
 no-transform

 proxy are prohibited to transform the resource (e.g.
some proxies change the format of images to save
space)

 only-if-cached

 I do not want to contact the origin server I do not want to contact the origin server

 useful for overloaded networks

Response-cache-directive (I)
 public

 the response can be cached (shared/private)

 private [=“header-name, …”]

 do not insert in shared cache (all or some headers)

 no-cache [=“header-name, …”]

 do not insert in cache (all or some headers)

 no-store

 do not insert in cache (shared/private) on disc

 no-transform

 must-revalidate

 proxy / client must re-validate with the origin server
when the cached resource becomes stale

Response-cache-directive (II)
 proxy-revalidate

 proxy / client must re-validate with the origin server
when the cached resource becomes stale

 max-age=seconds

 data expiration time

 s-maxage=seconds

 data expiration time in a shared cache

 has priority on max-age (only for shared caches)

 note: max-age and s-maxage have priority on a
possible “Expires:” header of the resource

HTTP 07/07/2011(dec'09)

© A.Lioy - Politecnico di Torino (2003-09) D-11

HTTP/1.1 general header (II)
 Trailer: header-name , …

 the specified headers are moved to the end of the
chunked body

 not applicable to Transfer-Encoding, Content-Length
and Trailer

 Transfer Encoding: transfer encoding Transfer-Encoding: transfer-encoding

HTTP/1.1 general header (III)
 Upgrade: protocol, …

 the client proposes to switch to a “better” protocol
(chosen by the server among the listed ones)

 Via: protocol node [comment] , …

 sequence of intermediate nodes (proxy or gateway)

 node = “host [: port]” or a pseudonym

 Warning: code agent text [date]

 typically used by proxies to signal specific conditions

 if the text is not ISO-8859-1 then RFC-2047

Warning codes
 110 Response is stale

 response is “old”

 111 Revalidation failed

 failure in contacting the origin server to revalidate

 112 Disconnected operation

i di t d b th t k proxy is disconnected by the network

 113 Heuristic expiration

 proxy has chosen an expiration time heuristically

 199 Miscellaneous warning

 214 Transformation applied

 proxy has changed the encoding of transmitted data

 299 Miscellaneous persistent warning

HTTP/1.1 entity header (I)
 Allow: method, …

 used by the server with the status 405 (Method Not
Allowed) to specify the allowed methods

 used by the client with PUT to suggest the methods
that should be used to access the resource

 Content Encoding: encoding Content-Encoding: encoding

 Content-Language: language

 Content-Length: num-of-bytes

 number (10 basis) of bytes of the body

 Content-Location: absoluteURI | relativeURI

 useful in case a resource provided after a
negotiation is also available directly

HTTP/1.1 entity header (I)
 Content-MD5: base64-md5-digest

 to protect the integrity of the transferred data (from
random errors, not from deliberate attacks!)

 Content-Range: interval

 Content-Type: mime-type

 Expires: http-date

 Last-Modified: http-date

State management
 web applications may need to keep information on

the users while browsing:

 across different pages

 across different times (minutes, hours, days)

 various motivations:

 user preferences (e.g. language, font size)

 business data (e.g. shopping kart)

 problem with HTTP:

 HTTP/1.0 makes single transactions and is stateless

 HTTP/1.1 allows multiple transactions over the
same connection, but is stateless among successive
connections

HTTP 07/07/2011(dec'09)

© A.Lioy - Politecnico di Torino (2003-09) D-12

Possible state management mechanisms
 at application level:

 via special URLs, dynamically generated

 e.g. www.x.com/basket/12ab34/

 via “hidden” fields (type=hidden) of a form

 passed in hidden way (POST method)

 passed in visible way (GET method)

– e.g. www.x.com/basket?id=12ab34

 at transport protocol level:

 cookies in HTTP

 v1 in HTTP/1.0

 v2 (+ v1) in HTTP/1.1

Why managing the state in HTTP?
 to manage the state without modifying the URLs

 users can exchange URLs together (without
exchanging also their own state)

 avoid “busting” intermediate caches with

 same data corresponding to different URLs

 different pages corresponding to the same URL

 minimise the impact on server and application
configuration

 associate the status to users even if anonymous
(e.g. not passing across the authentication portal)

 save the state in non-volatile memory

 preserved across reboots, UA start/stop, IP change

The 4 recommendations for cookies
 maintaining the state of an HTTP session is

appropriate only if …

 1) the user is conscious and consents to it

 2) the user can delete the state at any time

 3) state information is not disclosed to third parties
without the user’s explicit consentwithout the user s explicit consent

 4) state information does not contain sensitive data
and cannot be used to obtain sensitive data

Cookies
 goal: let the server store information locally to the

client running the browser

 in this way the server is unloaded

 ... but it introduces elements of:

 unpredictability (=UA not supporting/accepting
cookies)cookies)

 risk (=cookies read/modified on client or network)

1. store the cookie!

2. stored

3. here is the cookie!

Cookies' specification
 first defined by Netscape:

 “Persistent client state – HTTP cookies”

 then become IETF standard:

 “HTTP state management mechanism”:

 v1 = RFC-2109

 v2 = RFC-2965

 Netscape and v1 specifications are obsolete but
still used

 RFC-2964 “Use of HTTP state management”
contains recommendations on cookies’ problems /
dangers

Cookies’ features
 small size data stored at the client (persistent

information) and sent to the server

 cookies set by server on client with the headers:

 Set-Cookie: ... (v1)

 Set-Cookie2: ... (v2)

 cookies sent by client to server with the header:

 Cookie: ...

 every cookie has the format name=value

 saved locally by the browser (in a file)

 data sent to the server at next accesses

 used to create a link among different HTTP
requests to the same server

HTTP 07/07/2011(dec'09)

© A.Lioy - Politecnico di Torino (2003-09) D-13

Cookie support at browsers
 Netscape Navigator

 from version 2.0

 stored in the cookies.txt file (by default in
Netscape\Users\username)

 Microsoft IE

 from version 3.0

 stored in \Windows\Cookies or in the user profile
\Documents and Settings\username\Cookies

Implementation limits for cookies
 limits related to the minimum number of cookies

that should be supported by UA implementations

 total per client (e.g. on client’s disk):

max 300 cookies

max 4 kB per cookie

 total = 1.2 MB max

 per unique server/domain (e.g. in server’s RAM):

max 20 cookie / client

max 4 kB per cookie

 total = 80 KB max / client

Cookie transmission (v1): S > C
 cookie inserted inside the header of the HTTP

response

 syntax:

Set-Cookie:

cookieName=cookieValue

[; EXPIRES=dateValue]

[; DOMAIN=domainName]

[; PATH=pathName]

[; SECURE]

Cookie: value, expiration, secure
 the cookie name and the value can be any string:

 without commas, semicolons, and white spaces

 these special characters must be encoded in hex
(%2C, %3B, %20)

 EXPIRES: expiration date after which the cookie
can be deleted by the clientcan be deleted by the client

 rfc-822 format: Wdy, DD Mon YY HH:MM:SS GMT

 if no expiration is set, the cookie expires at browser
closure (stored in RAM instead of disk: volatile /
temporary cookie)

 SECURE: cookie transmitted only on HTTPS
channels

Cookie: domain, path
 DOMAIN specifies the domain authorised to

manage the cookie (e.g. polito.it)

 only requests to this domain trigger the transmission
of the cookie

 if the domain is not specified, the browser uses the
name of the server that sent the cookiename of the server that sent the cookie

 PATH specifies the path for which the cookie is
intended (e.g. /didattica/)

 only requests to URLs in this path trigger trigger the
transmission of the cookie

 if the path is not specified, the browser uses the one
of the URL that caused the reception of the cookie

Cookie transmission (V1): C > S
 before accessing a given URL, the browser checks

if it has some cookies associated with the domain
and path

 if it does, it includes all the name/value pairs of
these cookies inside the HTTP request header

 if the HTTP request specifies a URL of a dynamicif the HTTP request specifies a URL of a dynamic
page (e.g. CGI or ASP), the application will retrieve
the cookie string form the environment variable
HTTP_COOKIE

Cookie: name1=value1; name2=value2; ...

HTTP 07/07/2011(dec'09)

© A.Lioy - Politecnico di Torino (2003-09) D-14

Example (step 1)
 cookie used to manage the list of the books

selected by the user of a virtual shop

 the client accesses the server and receives:

Set Cookie:Set-Cookie:
customer=john_smith;
expires=Sat, 28-Aug-99 00:00:00 GMT;

path=/cgi/bin/;
domain=books.virtualShopping.com;
secure

Example (step 2)
 when accessing a URL within the path /cgi/bin, the

client sends to the server a header with:

 Cookie: customer=john_smith

 the client receives as a response:

 Set-Cookie: part_number=book1; path=/cgi/bin ; ...

 the client requests a URL within the path /cgi/bin
and sends:

 Cookie: customer=john_smith; part_number=book1

Example (step 3)
 the client receives:

 Set-Cookie: shipping=fedex; path=/cgi/bin/deliver; ...

 the client requests a URL within the path
/cgi/bin/deliver and sends:

 Cookie: customer=john_smith; part_number=book1;
shipping=fedexshipping=fedex

Problems with cookies
 the cookie mechanism allows building profiles of

the users

 user tracking = term used to indicate the possibility
to trace the sites visited by a given user and thus
its habits and interests

 example: if a user download an advertisementexample: if a user download an advertisement
banner from a site, it receives a cookie in addition
to an image

 for every site inside the circuit it is possible to set
and retrieve the value of the cookies relative to the
user browsing preferences

 cookies can be disabled on the browser

Problems with cookies
 performing authentication based on cookies (e.g.

commerce sites associating user to the kart, one-
click order):

 eavesdropping of cookies during transmission or on
the client

 attacks that allows intercepting cookies:attacks that allows intercepting cookies:

 packet sniffing

 web spoofing

 attacks against the client (virus, worm, javascript, ...)

 sub-domain attack (which part of the domain is
responsible of the service using the cookie?)

Cookie transmission (v2): S > C
 new syntax (v2) specified in RFC-2965

 one or more cookies (comma separated list)

Set-Cookie2: cookieName=cookieValue
[; Comment=commentText]
[; CommentURL="URL"][; CommentURL= URL]
[; Discard]
[; Domain=domainName]
[; Max-Age=dateValue]
[; Path=pathName]
[; Port="comma-separated-port-list"]
[; Secure]
[; Version=versionNumber]

HTTP 07/07/2011(dec'09)

© A.Lioy - Politecnico di Torino (2003-09) D-15

New attributes of cookies v2
 Comment and/or CommentURL

 inform the user about the purpose of the cookie

 Discard

 requires the UA to delete the cookie when it
terminates (=volatile cookie, stored only in RAM)

 Max-Age

 number of seconds after which the cookie must be
deleted

 Port

 TCP ports on which the cookie can be transmitted

 Version

 version number (now equal to 1)

Semantic change
 in v1 the Secure attribute requires transmission

only on HTTPS

 in v2 the Secure attribute is an advice by the
server:

 “to be treated securely”

 when sending the cookie back to the server the when sending the cookie back to the server, the
client should use a channel with no less than the
same level of security as was used when the cookie
was received

Cookie transmission (v2): C > S
 new syntax (v2) specified in RFC-2965

 one or more cookies (comma separated list)

Cookie: $Version=cookieVersion ;

cookieName=cookieValue

[; $Domain=domainName]

[; $Port="portNumber"]

[; $Path=pathName]

Request header “Cookie2”
 when a client transmits at least a cookie with a

version number greater than the one understood by
the client, it must signal to the server the
understood version with:

Cookie2: highest-cookie-version-understoodCookie2: highest cookie version understood

