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Abstract

Virtualization of computers enables a wide variety of applications ranging from
server consolidation to secure sandboxing of malicious content. Today, lack of se-
curity of virtual machines is a major obstacle for broad adoption of virtual machine
technology. We address this obstacle by an open architecture that adds scalable trusted
computing concepts to a virtual machine infrastructure. The platform has a layered sys-
tem architecture, and from bottom to top consists of a Trusted Platform Module (TPM)
specified by the Trusted Computing Group (TCG), a trusted virtualization layer with
strong isolation properties (among virtual machines) and well-defined interfaces to the
TPM, and security services (such as protected storage, security policy enforcement, and
identity management). We describe the guiding principles and the overall architecture
of the platform, and detail the advantages of such an architecture. The platform can
be leveraged to significantly enhance the security and trust properties of the standard
operating systems, middleware, and applications hosted atop the platform. We believe
the platform has wide-ranging applicability particularly in the context of distributed
scenarios with inherent, multilateral trust and security requirements. We give examples
of such scenarios that would be enabled by the platform.

1 Introduction
The task of securing personal computer (PC) platforms is becoming increasingly difficult.
The increasing mobility of clients between networks and the ubiquity of networks have
contributed to rapid exploitation of security vulnerabilities. Addressing this issue requires
resolving an assortment of challenges including:

• protection of personally identifiable data against malicious disclosure by Trojan horses
or viruses,

• enabling the user to determine whether a personal workstation is in a secure state or
not,

• protection of cryptographic keys for authentication and confidentiality, and

• enforcement of security policies even if parts of the machine may be under attack or
are already compromised.
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‡IBM Research, Zurich, Switzerland
§Politecnico di Torino, Italy
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Software-based techniques can address parts of these problems if the core operating system
functions correctly. Unfortunately, most smart attacks target the core operating system and
the deployed security software. Thus, techniques implemented in software-only will have
limited effectiveness.

Our approach to address the above issues and limitations is to combine two core tech-
nologies: (1) Virtual Machines1, which allow containment of attacks and scoping of trust,
and (2) Trusted Computing, which provides secure hardware that can act as a core root of
trust. This combination enables remote verification and local fallback security if software
is compromised.

While virtualization is attractive for improving security through virtual machine iso-
lation, as Garfinkel and Rosenblum [GR05] rightly point out, it opens a whole new pan-
dora’s box of security problems that the state-of-the-art in virtualization technology hardly
addresses. The specific technical challenges that result when combining those two tech-
nologies are:

1. providing an infrastructure with a set of services that implement scalable security for
virtual machines,

2. hardening the virtualization software with the goal of providing an isolation degree
among virtual machines that is as close as possible to the isolation among physical
machines.

3. leveraging Trusted Computing technology (e.g., for attesting to the integrity of the
virtualization layer) while at the same time providing a choice of acceptable policies
(e.g., satisfying privacy concerns) to the users.

The last point deals with the enforcement of multilateral security requirements. Enforced
security policies need to balance the security requirements of all stakeholders.

We describe a platform that is built upon the foundation of the hardware root of trust of-
fered by the Trusted Platform Module (TPM) and leverages the recent advances in hardware
virtualization such as virtualization support in the CPU offered in latest chips from Intel
and AMD. The platform called OpenTC [Ope] (which stands for Open Trusted Computing)
is layered and consists of actual hardware, a trusted virtualization layer with strong isola-
tion properties (among virtual machines), and security services (such as protected storage,
TPM services, key management, security policy enforcement, and identity management).

Unlike existing proprietary point solutions in the Trusted Computing space, our plat-
form is based on open design and open-source security technology. This allows users to
adapt the platform as needed while verifying the platform’s security policies and mecha-
nisms. A prime motivation for an open design and open-source-based approach is to build
a trusted platform that can illustrate the benefits of Trusted Computing for each individual
end-user. In particular, the OpenTC platform cannot be used to enforce policies that a user
has not consented. Furthermore, the owner of a PC would be able to accept different se-
curity policies for each of the virtual machines running on the physical PC. For example,
while a virtual machine holding personal details of an user can be configured with a privacy
focus, another virtual machine co-located on the same physical PC and owned by the user’s
employer may have more of a security focus.

Outline: In Section 2, we survey our security and design requirements. In Section 3,
we survey related work. In Section 4, we outline our architecture. In Section 5, we describe
our usage scenarios. In Section 6, we conclude and identify open questions. Appendix A
outlines the threat model and the proposed countermeasures for a secure transaction usage
scenario.

1When we talk about virtual machines in the context of this paper, we are interested in multiple virtual personal
computer instances on a single piece of hardware.
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2 Design Goals
In this section, we explain the principles that guide our design and implementation.

Open Specification, Implementation, and Validation: Trustworthiness requires open
specification, implementation, validation, and execution. Due to its very nature, the Trusted
Computing approach requires powerful security mechanisms at a very low system level.
These mechanisms can affect the execution of every other system component. We reduce
the risk that software violates the interests of system owners by allowing the inspection
of both design and implementation. Furthermore, we provide different implementations
of core functionality to validate interoperability. One example is the deployment of our
security services on two different hypervisors.

Explicit Policies Separated from Mechanisms: Policies should be explicit and separated
from mechanisms. Policies are only enforced if if they are in accordance with the subject’s
explicit consent. This principle should also be honored by protecting the user’s execution
environment against unilateral interventions of other parties such as system operators or
content owners. However, in enterprise scenarios unilateral intervention must be supported
for the benefit of a larger system. If a user has consented to a policy of its employer, audit
trails should be provided to support ex post dispute resolution.

Power to the User: User control should be maximized. Today, Trusted Computing
only provides a choice to turn off the Trusted Platform Module and thus disable desirable
benefits, too. OpenTC aims at providing finer-grained choices. For example, a user may
choose to add a virtual TPM device to a virtual machine that only exposes a subset of
the TPM functionality. As a general rule, this principle is equally applicable to operating
systems and other software components: software must not inhibit the system owner from
executing the right to opt out at any given stage. This means that, for example, an individual
should be able to just delete an enterprise partition to opt out of the associated policies.

Multilateral Security and Privacy: Multilateral policies should be negotiable. Trusted
Computing mechanisms can be used to impose temporary, functional restrictions on exe-
cution environments that enforce mutual agreements between the system owner and other
parties. These agreements can be conceptualized as ’transaction security contracts.’ They
concern technical configurations and are enforced by technical means. Note that these im-
portant differences to real world contracts has to be taken into account. Another important
aspect is privacy protection for individuals. In particular for transaction security contracts,
the identity of a user as well as other personally identifiable information is often not rele-
vant. As a consequence, these secure transactions should be enabled without revealing any
personal information.

Scalability: In order to be robust and scalable, data must be migrateable. Software mi-
gration should be enabled between platforms with equivalent policies and protection levels.
Requirements of securing platforms and protecting data have to be balanced against those
of service continuity, manageability, and product life-cycles, and fair sharing. Technical
options of binding data and software to particular trusted platforms must be complemented
by mechanisms allowing to migrate and share protected elements.

3 Related Work
Virtual Machine Monitors Our aim is to build a framework for running secure and trusted
operating systems. From the security perspective we rely upon two existing and open
source virtualization technologies, Xen [BDF+03] and Fiasco [Grob, Hoh98], used to guar-
antee the isolation among applications, services or fully fledged operating systems – the so
called compartments or domains – that run concurrently.

Xen is a virtual machine monitor or hypervisor that supports the execution of multiple
guest operating systems. Xen 2 used a para-virtualization approach to achieve better per-
formances than the traditional approaches with a full host system, but required a modified
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kernel. Xen version 3.0 also supports full virtualization of the guest machines to run un-
modified operating systems. Xen 3 requires hardware support for virtual machine monitors
provided by the next generation of AMD and Intel processors.

Fiasco is a small and efficient microkernel implementing the L4 API that concurrently
executes different tasks and guarantees the isolation between them through control of inter-
process communications. L4 can run Linux as one of these tasks [HHL+97]. Again, this
either requires a modified guest operating system or else hardware support.

Many other virtualization technologies have been proposed and implemented. In [GPC+03]
the authors proposed Terra, a Virtual Machine Monitor able to perform the binary attesta-
tion of virtual machines in software in two different flavours: ’ahead-of time’ for small
VMs and ’optimistic’ for large VMs. Note that Terra does not use secure hardware.

VMware [MN00] is a commercial software that implements the full virtualization on
top of host Operating System (Linux and MS-Windows). A version also exists capable
to run the virtual machine monitor on the “bare metal” like Xen does: VMware ESX
server [vmwa] is able to run wide set of platforms. Hardware support for virtualization
is still an experimental feature in VMware ESX, but it is planned to be fully supported in
next versions [vmwb].

Trusted Computing The specification of the Trusted Platform Module has been stan-
dardized by the Trusted Computing Group (TCG). The TPM is tamper-resistant and pro-
vides core security functions (such as random number generation, computation of crypto-
graphic hash, RSA key generation, RSA signature generation/verification, and storage of
keys) in hardware. Our architecture is meant to be deployed on TPM-equipped devices
(such as PCs, servers, mobile phones) and leverages the TPM as a trusted third party for in-
teractions between software hosted atop the platform and outside distributed applications.
Already, TPM chips are widely deployed – many notebook and desktop manufacturers now
ship their products with TPM chips.

TPM-enabled boot loaders have been proposed in [Groa, MSMW03] in order to store
the measures of the loaded software modules. The Enforcer [MSMW03, MSWM03] is
a Linux security module that adds Tripwire-like features and uses the TPM for dynamic
integrity checking of the file system and for securely storing the password of the encrypted
loop device. An integration of SElinux and the previous TPM-based Enforcer has been
proposed in [MSW+04].

[SZ03] only uses TPM to sign the system and verify signatures to discover attacks, but
does not use any other TPM features like remote attestation. [SvW04] introduces remote
attestation, but differ from our architecture because it does not consider privacy issues and
isolated execution which are taken into account by our architecture. In [MSW+04] the
system proposed uses TPM and is capable of being attested, but provide isolation between
different applications using SELinux policies and not a virtualization layer.

Secure Operating Systems The use of virtualization techniques is one possibility for
enhancing operating system security. Other approaches are Linux with enhanced access
control policies such as SELinux [NSA]. Unlike our architecture, SELinux does not use
trusted computing to enhance security.

The Next-Generation Secure Computing Base (NGSCB) [CJPL02], formerly Palla-
dium, is a Microsoft concept for a Trusted Operating System based on virtualization and
Trusted Computing hardware. It seems as if only a minor fraction of its concepts (such as
harddisk encryption [Mica] but not virtualization) are transferred into the actual Vista [Micb]
product.

Attestation One of the key feature that the TPM enables is remote attestation. This
allows a remote stakeholder to verify the integrity of a machine. Attestation has been
examined by several projects [MSMW03, SvW04, SZ03]. The goal is to enhance Linux
with support for integrity measurement and binary attestation.

Binary attestation can be a straighforward way to verify the integrity of the platforms,
but it suffers some problems. Lack of scalability is a major drawback of binary attestation:
binary attestation requires the verifier to know all possible hash-values of all OS compo-
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Figure 1: Layers of the OpenTC Architecture

nents of any machine that he may want to verify. Another concern is privacy: by revealing
the configuration of the system to be attested, the binary attestation causes an unwanted
leakage of private information. We pursue a different approach called property-based at-
testation [PSHW04, SS05]. Through this approach, a verifier can validate properties of
a remote platform without receiving the related configuration details. Example properties
that can locally be verified are the version and distribution used to install a machine, the fact
that all installed software is authorized by the owner of the machine, the owner is a mem-
ber in a trusted list of users, and the machine is properly isolated from untrusted networks.
The core idea is to use a plugin to perform these checks while using binary attestation to
validate the plugin and authenticating its output.

4 The Open Trusted Computing Architecture
Figure 1 outlines our architecture. The unique features of the OpenTC architecture are:

• Verifiable security by means of trusted computing technology.

• Support of multiple different hypervisors (L4 and Xen).

• Flexibility by means of configurable policies.

It is structured in different layers of abstraction that we will describe in the sequel. Each
layer interact with the next layer of abstraction by a set of well-defined interfaces.

The foundation of our architecture is actual virtualization-enabled x86 processor and its
peripherals. This includes processors, memory, and devices (network, storage, PCI cards,
etc.) that need to be virtualized. The hypervisors used support AMD SVM technology2 as
well as Intel VT technology3 By using processors with full virtualization support, we can
achieve better isolation without the need to modify guest operating systems.

2See http://enterprise.amd.com/us-en/solutions/consolidation/virtualization.aspx
3See http://www.intel.com/technology/computing/vptech/
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4.1 Virtualization Layer
The virtualization layer provides virtual machines and their basic policy enforcement ca-
pabilities. We built on existing versions of the L4 and Xen hypervisors. Our main focus is
to extend these hypervisors to increase security. That includes several aspects:

• Fine-grained Trust Domains: Unlike today’s version of Xen, we separate services
into small isolated virtual machines to increase robustness and security.

• Policy-enforcement: The virtualization layer is built to enforce a wide range of secu-
rity policies. Examples include access and flow control policies as well as resource
sharing policies.

• Verifiable security: By means of trusted computing, external stakeholders can verify
the virtualization layer and its policies.

The virtualization layer offers a basic management interface (BMI) to the security services
layer. The interface supports functions like creating a virtual machine while specifying
its virtual network cards, memory, storage, and CPUs. An example of a policy that can
be enforced at the virtualization layer are sHype policies that can be loaded at boot-time
[SJV+05].

4.2 Security Services Layer
The security services layer provides scalable security and virtualization functions that are
needed to enforce security policies. This includes compartment security management, user
security management, and secure device virtualization.

The compartment security manager manages the life-cycle and tracks the security poli-
cies and other context associated with each compartment. This includes integrity con-
straints, permissions, and global identifiers for each compartment. The compartment secu-
rity manager can be used to prove selected security properties to peers. The user security
manager manages the users of the system and enables authentication of individual users
and their associated roles.

An important contribution to scalability for trusted computing is the focus on security
properties for trust management [PSHW04, SS05, HCF04]. Instead of verifying integrity
by means of cryptographic checksums, we use higher-level properties such as user roles,
machine types, or trust domains to determine trust. This is done by first using checksums to
verify the core security services and then use these security services to evaluate the desired
security properties. Only if these properties are satisfied, certain actions such as unsealing
a key or performing a transaction with a peer are performed. The consequence is that a
verifier only needs to define security properties to be satisfied and no longer needs to track
individual software configurations that are deemed trustworthy.

Virtualized devices can include any device that can be made to support virtualiza-
tion.Secure storage provide virtual partitions with integrity, confidentiality, and freshness
guarantees. Virtual networks can provide mutually isolated virtual network topologies and
secure transport (cf. [GJP+05]). The implementation of trusted user interfaces depends on
the environment. A simple solution that is sufficient for reliable selecting a compartment
can be implemented by a secure hot-key that is caught by a virtualized keyboard driver.
Another alternative is a multi-compartment graphical user interface that assigns a distin-
guishable window to each compartment. An third option are remote user interfaces such as
a secure shell management console or remotely accessible management service. In our se-
cure transaction scenario (described later in Section 5), the user can use a hot-key to switch
compartments. In a server setting, the shell will indicate the compartment that it is oper-
ating on. The cryptographic services include a virtual TPM as well as other cryptographic
and key management primitives.
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For efficiency, the security services can push policies into policy enforcement func-
tions of the virtualization layer. This is done, if fast policy enforcement is critical for
performance. E.g., a policy decision whether a certain network card can be assigned to a
newly created virtual machine can easily be done outside the hypervisor since it is usually
not performance critical. Access decision for shared resources, on the other hand, should
be executed in the core since their performance is critical.

4.3 Virtual Machines Layer
The virtual machines layer contains the actual virtual machines that constitute the payload
of the architecture. The architecture can host windows and Linux virtual machines. This is
done by providing drivers for accessing the virtual hardware provided by the lower layers.
Depending on the hypervisor, certain security services can be implemented by a set of
security management machines.

4.4 Application Layer
In a management virtual machine, we host the management applications that allow users to
interact and maintain their platform. This includes accepting/rejecting policies and defining
or loading baseline policies that can delegate certain management functions (such as trust
in public keys) to other parties. Another example is the life-cycle management of a trusted
platform module (TPM).

An important class of applications are management applications. In particular, in vir-
tualized data-centers, a scalable management infrastructure is essential. Technically, this
scalability is achieved by multiple mechanisms such as secure migration of virtual ma-
chines that enables load balancing or self-services machines that obtain maintenance or-
ders and execute these orders while only reporting results to the management servers. An
example of such a pull model is patch management in which a machine pulls the latest
patch policy, then installs the patches from a cluster of software distribution servers, and
finally reports its success to the configuration management system. As a consequence,
central management infrastructure only manages policies while the costly operations are
distributed onto the individual machines.

4.5 Implementation of the Architecture
On the L4 hypervisor, the security and management services are isolated virtual machines
that run directly on top of the L4 micro kernel. Each service defines a well-defined interface
for inter-process communication (IPC). Interaction between services or between instances
of hosted payload virtual machines and services is performed by using these interfaces. An
IPC call that is issued by a process first goes to the L4 micro kernel, which then transfers
it to the callee. The IPC mechanism is implemented similarly to the IPC architecture of
CORBA.

The implementation of the security and management services on the Xen Hypervi-
sor is split into two parts. The low-level part is implemented directly in the Xen Kernel
running with full privileges. This part contains the security enforcement of the security
services. The lower-level part controls the basic access, communication and enforcement
and provides a well-defined interface to the higher layers. The higher level includes non-
enforcement parts of the security services as well as the management components. Both
run in one or more4 service virtual machines or in a special security service virtual machine
as normal user processes.

4For increased security, we split the single management virtual machine of Xen into multiple smaller ones.
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5 Application scenarios
The architecture described in Section 4 is designed to support a wide range of scenarios.
To validate our design, we focus on three scenarios with substantially different security
requirements that we describe in the sequel.

5.1 Private Electronic Transaction (PET)
Private Electronic Transaction (PET) is the first application scenario that we are currently
implementing. This simple proof of concept enables users to perform secure SSL trans-
actions. Secure means that (a) a user can validate a given virtual machine that is used
for commercial transactions and can convince others of its integrity, and (b) that the user
secrets are securely stored throughout the life-cycle of the virtual machine. This scenario il-
lustrates how trusted computing technologies can be used for protecting the end-user while
performing security-critical activities using his personal computer.

PET is focused on electronic transactions (e.g. home banking and auctioning) per-
formed with well-known and trusted entities. One compartment will be dedicated for run-
ning a trusted browser to be used for the electronic transactions. All other user applications
will run in one or more compartments other than the trusted one. The PET application
run in the trusted compartment could be provided to the customer as an image on a CD by
a trusted third party, delivered and installed on the OpenTC platform in a secure manner.
Another possible option would be that the compartment is prepared by other parties (e.g.
the OpenTC consortium) and validated by the third party.

A demonstrator for this scenario is currently under development and is expected to be
available at the end of this year. Though this demonstrator is focused on the PET scenario, it
will include many relevant components of the final OpenTC architecture, e.g., some trusted
serviced like the Compartment and the Storage Managers which will be also used in other
usage scenarios. Therefore, this demonstrator can be also considered as a preliminary
prototype for the other scenarios.

5.2 Virtual Data Center (VDC)
Virtual Data Center (VDC) is a scenario that focuses on performance of large scale systems.
The core idea is that a service provider runs a data center for multiple customers (usually
corporations). These customers require that certain infrastructures with certain security
requirements are provided while being isolated from all other customers.

The service provider has a virtual IT infrastructure (consisting of virtual machines, vir-
tual network cards, virtual network connections, virtual firewalls, virtual TPMs, etc.) and
the data center infrastructure provider maps the virtual IT infrastructure onto the physical
data center infrastructure. In such a scenario, the data center provides ’virtualized’ re-
sources rather than real, physical ones and these resources effectively share the underlying
physical infrastructure.

The management of such a data center will be split into two layers. The virtual hard-
ware will be managed by our new management applications. This virtual infrastructure
management replaces the time consuming manual configuration of systems. The content of
the virtual infrastructure can then be maintained using normal systems management tools.
Access to infrastructure management facilities will be more constrained and only a small
number of well defined options will be available to the service provider. Even the rights
of the data center operator will usually be limited in order to prevent cross-customer con-
nections by accidental misconfiguration. Without having such technical means to validate
that the provider does not abuse these privilege, the service provider may have to put com-
plete trust on the infrastructure provider. Customers may therefore require attestations at
runtime that their services are protected from such unauthorized access. Naturally, such
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attestations need to hide all details about other customers on the same physical machine
while still providing convincing security proof.

The customer components will finally be hosted in compartments. A compartment is
characterized by services and applications it hosts, its configuration and policies attached
to it. These policies define the protection level for the accessed data and processed, the
protection level of applications and services that participate in the processing of data, the
information flow between different compartments (both local to the hardware platform and
on remote platforms), the permitted interactions with the virtualization environment and
management, the events that trigger a change in the trust state of a compartment and/or its
execution environment.

5.3 Corporate Computing on Home PC (CCHP)
Corporate Computing on Home PC (CCHP) is a scenario that focuses on multilateral secu-
rity requirements. While a user wants to freely use his home PC, his/her employer wants to
ensure the integrity and confidentiality of corporate data stored on the PC. That requires iso-
lation between the company-specific data/applications and other data/application as well as
remote verification of the parts that are security critical for the enterprise by the employer.
Our design for this scenario involves establishment of two virtual zones – one for the user
and one for the enterprise. Both the home and the enterprise zone can host one or more
virtual machines. At a very high-level, isolation involves ensuring that even if one virtual
machine is compromised (e.g., a virus in the compartment hosting the user’s favorite online
game), it should not affect other virtual machines.

The two actors, company and employee, normally have a mutually distrustful (not to
be confused with mistrustful) relationship. This means that the corporation does not com-
pletely trust a home user to maintain his/her machine correctly. The home PC user needs
assurance that the corporation can only see data in the corporate zone while not being able
to learn about information and activities in the home zone. In both cases, the underlying
principle is “trust but verify.” The actors differ in their concerns. The company implements
the mechanisms that allow the remote virtual machines (running on employees’ home PCs)
appropriate access into the corporate network after authentication and verification. The
employee owns and provides the trusted platform hosting the corporate virtual machines.

A particular technical challenge in this scenario is protection of corporate secrets during
the life cycle of the virtual machines. A home user may install, start, delete, hibernate, or
migrate a virtual machine. He may also choose to sell his PC including the corporate virtual
machines. In all these cases, corporate data needs to remain properly protected.

6 Conclusion
We have described an open and scalable architecture for trusted virtualization. Trusted
computing provides a hardware root of trust while virtualization enables incident contain-
ment and fine-grained security policy enforcement.

The core technical challenges that we face are multi-lateral security that balances re-
quirements of all stakeholders as well as an open approach to trusted computing that is not
limited to particular policies or mechanisms.

A main focus of the project is openness and scalability. Openness is addressed by an
open design and open-source implementation which separate security policies from en-
forcement mechanisms. Scalability must be addressed by all parts of the architecture. Im-
portant aspects are scalable attestation, management, and platform. While scalable attesta-
tion is provided by property-based attestation that separates trust from integrity checksums
of software, scalable management is addressed by enabling each machine to poll for and
implement policy updates. This reduces the load on enterprise management infrastruc-
tures. The scalability of the platform has many aspects. One aspect is our support for
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secure migration of virtual machines. This allows us to subsequently add new hardware to
a data center while the data center then automatically migrates virtual machines in order to
balance the overall load.

The ongoing implementation of different scenarios will provide further validation and
insight into additional challenges when implementing such a secure trusted computing in-
frastructure.
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A PET Threat model and Countermeasures
This appendix describes the threat model which PET is built upon and the technical coun-
termeasures currently under development for defending the client system. These counter-
measures are implemented through the components of the OpenTC architecture described
in Section 4.

A.1 Assumptions
For the PET scenario the following assumptions apply.

Correct hardware The underlying hardware (e.g. CPU, devices, TPM, etc.) is non-
malicious and behaves as specified.

The TCB is secure and trusted The Trusted Computing Base of the client platform,
including the virtualization engines and the security services is correct and behaves as
specified.

Correct trusted credentials It is assumed that the server’s credentials of the trusted party
- all certificates on the certification path for the TLS server authentication, from the root
CA to the server certificate, both included - are correct and have been “installed” in a secure
manner.

User credentials Authentication schemes other than the HTTP basic authentication have
not been taken into account in this scenario. Therefore only user name and password are
supported: credentials like one time passwords and the TLS client authentication are cur-
rently unsupported.

Trusted Administrator The standard services for compartment administration and plat-
form management must be trusted to act in accordance with the wishes of users, since they
have to access security-critical information.
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No physical attack Physical attacks against the underlying hardware platform have not
been taken into account in this scenario.

Trusted party The actual bank or auction house is considered as a trusted party: this
means that it is assumed that these parties handle all sensitive data of users securely.

A.2 Threats
The PET scenario takes into account the following threats.

Phishing An attacker tries to impersonate the trusted party’s (e.g. bank’s) web site. This
way, confidential data such as the credentials (user name, password, PINs, TANs) might
be disclosed. The attacker can then use this information to illegally withdraw money from
the user’s bank account. The phishing attack can therefore be considered as a sequence
of three different sub-attacks: redirecting the user to a fake web server, getting the user’s
credentials, using them on behalf of the legitimate user.

Network redirection to a fake web server Network redirection to a fake bank server
due to pharming, DNS cache poisoning and similar attacks.

Trojan horse and Malware Potentially harmful software such as Trojan horses or key
loggers might get installed on a computer system as a consequence of the user’s actions
but without his/her knowledge or approval. This software might report sensitive data of the
user to an attacker.

Exploitation of software vulnerabilities A remote attacker can try to exploit the soft-
ware vulnerabilities present in the user’s system by running arbitrary code in order to get
the control of the platform.

Modification of the client configuration The user may intentionally or unintentionally
modify the configuration of his/her client platform, also including the PET application.

A.3 Countermeasures
Under the previous assumptions, a set of technical solutions suitable for defending the
user’s platform against the listed threats has been defined. In order to find the sets with
the minimum number of countermeasures that protect the whole user’s system, we have
modeled the security threats by using the well-known attack trees [Sch99] formalism. We
then extended it into a new formalism, called attack-countermeasure trees and currently
under development by attaching a proper countermeasure pattern to each each attack in a
leaf.

The resulting trees can be mapped to binary expressions where the leafs of the tree
represent binary variables - countermeasure used or not - and the root of the tree repre-
sents the result of the expression - attack successful or not. It is then possible to find the
minimum sets of countermeasures that satisfy the boolean equation obtained by forcing the
boolean expression to be ’false.’ Among these minimum sets, we chose two configurations
of countermeasures that will be supported by the OpenTC architecture currently under de-
velopment. The configurations differ primarily in whether modifications are required at the
trusted party (e.g., bank), compared to the current manner of doing web transactions. We
now describe those countermeasures.
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A.3.1 Countermeasures Shared by Both Configurations

Some countermeasures are shared between the two proposed configurations. They mainly
rely upon the isolation property provided by the virtualization engines. The PET applica-
tion will run on a standard web browser (possibly customized) in a stripped-down dedicated
compartment, i.e. a Xen guest domain or a L4Linux instance, considered as “trusted.” All
applications commonly used, like the e-mail client, run in a different (or in different) com-
partment(s) considered as “untrusted.” The full TCB and the trusted compartment running
the browser for the PET application are always measured at their startup before being exe-
cuted.

The user can switch between the compartments by using two different “hot-key” se-
quences directly handled by the TCB that implements trusted paths to the user. In the final
version of the OpenTC framework, more advanced tools for the management of the com-
partments will be available. Since the trusted and the untrusted compartment are isolated
an application running within the latter is not allowed to launch or switch to the former.
Therefore, if the user receives a fake e-mail from a phisher, when he/she clicks on the fake
link only the untrusted browser will be opened.

Furthermore, the current demonstrator won’t provide any reference monitor for dy-
namically verifying the integrity status of the compartment and for taking the appropriate
actions (e.g. stopping the compartment) should the verification fail. Therefore a possible
way for protecting the trusted compartment against the software vulnerabilities exploitation
is assuring that the network connections to/from the trusted compartment will occur only
with the trusted party. As a partial protection against this threat, a firewall for filtering all
incoming network packets will be setup for the trusted compartment.

In both configurations, the standard authentication of the server performed during the
end-to-end TLS handshake between the browser and the trusted party web site will be used
to trigger other the actions of other countermeasures.

Finally with both configurations, the user won’t be able to access the trusted party web
site from the untrusted compartment.

A.3.2 Configuration with Modification at the Trusted Party Side

The first chosen configuration relies upon the mandatory remote attestation of the client
performed by the bank server. This configuration’s specific countermeasures are the fol-
lowing.

The trusted compartment and the untrusted one looks very different The user is
clearly notified if he/she is using the trusted compartment or not.

Browser changes look when it is securely connected to the bank The appearance of
the browser like a skin or a background image will change only when connected to the
right web site. This look, bound to the web site, is chosen by the user and it is securely
sealed by using the TPM. The change of appearance will be triggered by a successful TLS
connection and it will occur only within the trusted compartment.

Client remote attestation The web server of the bank or other Trusted Party always
requests the client for its attestation before: the client will report the integrity measurement
of the whole TCB and of the trusted compartment to the trusted party.

Always requesting the trusted party’s platform authentication All network traffic
outgoing from the trusted compartment is routed to a dedicated compartment - to be con-
sidered as part of the TCB and therefore correct - that forwards the network traffic coming
from the trusted browser to the Internet only if directed to the right web site. For au-
thenticating the right web site before establishing the end-to-end TLS channel between the
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browser and the trusted party, we chose to always require the authentication of the trusted
party’s platform as a first step toward the full remote attestation.

On the client side, the client remote attestation protocol and the trusted party’s platform
authentication and will be performed by a proxy running in the dedicate compartment.

A.3.3 Configuration without Any Modification at the Trusted Party Side

The second chosen configuration requires modifications only at the client side and uses a
protected storage for the user’s credentials. The specific countermeasures for this configu-
ration are the following.

Protected storage for the user’s credentials The protected storage works within the
trusted compartment only, seals the user’s credentials once they are set the first time and
releases them only when connected to the right web site; the identification of the right web
site is triggered by a successful TLS server authentication.

Strong validation of the server certificate This is a companion countermeasure of the
standard TLS authentication of the server and it means that in addition to the standard cer-
tificate validation of the server certificate (i.e. CA’s signature verification and revocation
checking) must be done, but also checking that is the “right” instance of the certificate.
Furthermore the only CA certificate present in the browser’s database of the trusted certifi-
cates.

Checking the compartment’s integrity before booting it The Compartment Manager
will securely store the measurement of the trusted compartment and it will check it at
every startup against the right measure. If the measures differ from those stored by the
Compartment Manater, the trusted compartment won’t be started.
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