

X.509 certificates

- standard ITU-T X.509:
 - v1 (1988)
 - v2 (1993) = minor
 - v3 (1996) = v2 + extensions + attribute certificate v1
 - v3 (2001) = v3 + attribute certificates v2
- is part of the standard X.500 for directory services (white pages)
- is a solution to the problem of identifying the owner of a cryptographic key
- definition in ASN.1 (Abstract Syntax Notation 1)

X.509 version 3

- standard completed in June 1996
- groups together in a unique document the modifications required to extend the definition of certificate and CRL
- two types of extensions:
 - public, that is defined by the standard and consequently made public to anybody
 - private, unique for a certain user community

Critical extensions

- an extension can be defined as critical or non critical:
 - in the verification process the certificates that contain an unrecognized critical extension MUST be rejected
 - a non critical extension MAY be ignored if it is unrecognized
- the different (above) processing is entirely the responsibility of the party that performs the verification: the Relying Party (RP)

Public extensions

X.509v3 defines four extension classes:

- key and policy information
- certificate subject and certificate issuer attributes
- certificate path constraints
- CRL distribution points

Key and policy information

- authority key identifier
- subject key identifier
- key usage
- private key usage period
- certificate policies
- policy mappings

Key and policy information

key usage .

- identifies the application domain for which the public key can be used
- can be critical or not critical
- if it is critical then the certificate can be used only for the scopes for which the corresponding option is defined

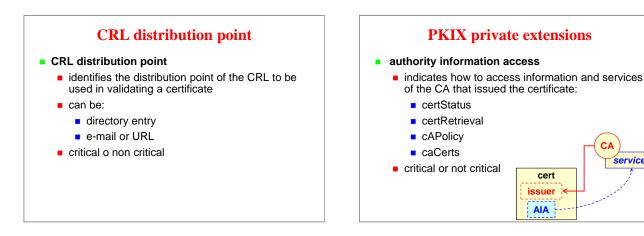
Key and policy information

- key usage the applications that can be defined are:
 - digitalSignature (CA, user)
 - nonRepudiation (user)
 - keyEncipherment (user)
 - dataEncipherment

 - keyAgreement (encipherOnly, decipherOnly)
 - keyCertSign (CA)
 - cRLSign (CA)

Certificate subject and certificate issuer attributes

- subject alternative name
- issuer alternative name
- subject directory attributes


Certificate subject and certificate issuer attributes subject alternative name allows to use different formalisms to identify the owner of the certificate (e.g. e-mail address, IP address, URL) always critical if the field subject-name is empty

X.509 alternative names

- various possibilities:
 - rfc822Name
 - dNSName
 - iPAddress
 - uniformResourceIdentifier
 - directoryName
 - X400Address
 - ediPartyName
 - registeredID
 - otherName

services

Extended key usage

in addition or in substitution of keyUsage

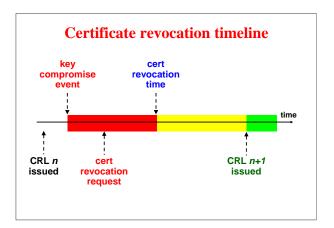
- possible values:
 - (id-pkix.3.1) serverAuth [DS, KE, KA]
 - (id-pkix.3.2) clientAuth [DS, KA]
 - (id-pkix.3.3) codeSigning [DS]
 - (id-pkix.3.4) emailProtection [DS, NR, KE, KA]
 - (id-pkix.3.8) timeStamping [DS, NR]

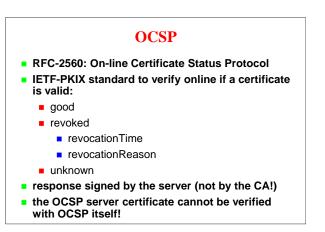
CRL X.509

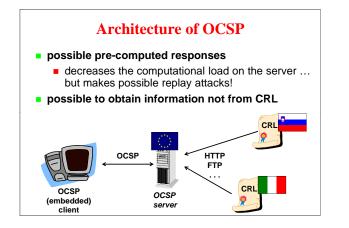
- Certificate Revocation List
- list of revoked certificates
- CRLs are issued periodically and maintained by the certificate issuers
- CRLs are digitally signed:
 - by the CA that issued the certificates
 - by a revocation authority delegated by the (indirect CRL, iCRL)

CRL X.509 version 2

CertificateList ::= SEQU tbsCertList signatureAlgorithm signatureValue	ENCE { TBSCertList, AlgorithmIdentifier, BIT STRING }
TBSCertList ::= SEQUENCE version	{ Version OPTIONAL, if present, version must be v2
signature	AlgorithmIdentifier,
issuer	Name,
thisUpdate	Time,
nextUpdate	Time OPTIONAL,
revokedCertificates	SEQUENCE {
userCertificate	CertificateSerialNumber,
revocationDate	Time,
crlEntryExtensions	Extensions OPTIONAL
<pre>} OPTIONAL,</pre>	
crlExtensions	[0] Extensions OPTIONAL
}	

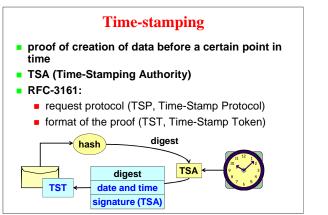

Extensions of CRLv2

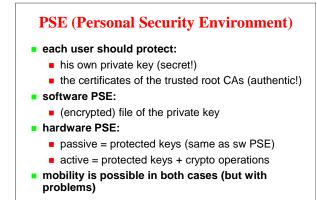

crlEntryExtensions:

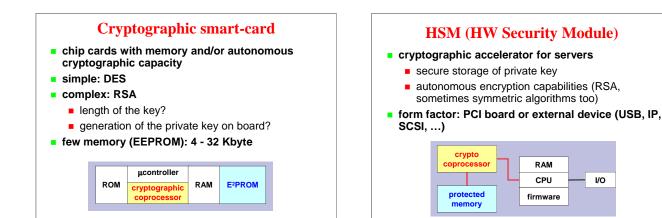

- reason code
- hold instruction code
- invalidity date
- certificate issuer

crlExtensions:

- authority key identifier
- issuer alternative name
- CRL number
- delta CRL indicator
- issuing distribution point

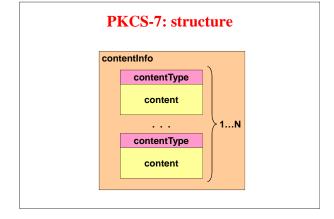

Models of OCSP responder

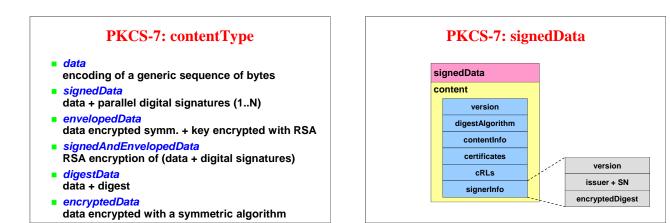

Trusted Responder

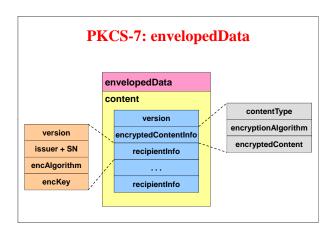

- the OCSP server signs the responses with a pair key:cert independent of the CA for which it is responding
- company responder or TTP paid by the users

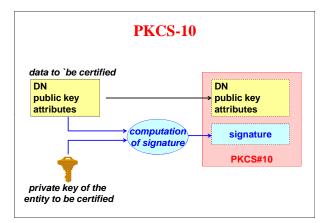

Delegated Responder

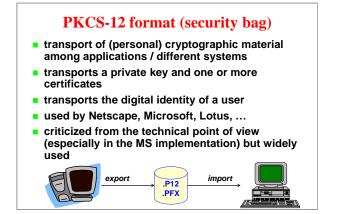
- the OCSP server signs the responses with a pair key:cert which is (can be) different based on the CA for which it is responding
- TTP paid by the CA


- MS-CAPI CSP (Crypto Service Provider)
 - same functions as PKCS-11 but proprietary API of MS




- PKCS-7 = secure envelope
 - signed and/or encrypted
- PKCS-10 = certificate request
 used in the communication among the client and
 - CA / RA
- PKCS-12 = software PSE (Personal Security Environment)
 - transport of keys and certificates
- are not application formats:
 - S/MIME? IDUP-GSS-API? XML-DSIG?
 - legal electronic documents?


PKCS-7 and CMS formats


- cryptographic message syntax
- PKCS-7 is the RSA standard for secure envelope (v1.5 is also RFC-2315)
- CMS is the evolution of PKCS-7 inside IETF, numbered as RFC-2630
- allows signing and/or encryption of data, with symmetric or asymmetric algorithms
- allows to put more signatures on the same object (hierarchical or parallel)
- can include the certificates used for the signature
- is a recursive format

