
Distributed programming I (webprog - dec'09)

© A.Lioy - Politecnico di Torino (2009) C-1

Programming web-based
applications

Antonio Lioy < lioy@polito it >Antonio Lioy < lioy@polito.it >

english version created and modified by

Marco D. Aime < m.aime@polito.it >

Politecnico di Torino

Dip. Automatica e Informatica

World Wide Web (WWW)
 often simply abbreviated as “web”

 set of:

 communication protocols

 data formats

 built on top of TCP/IP channels

IP

TCP

HTTP FTP

HTML

CSS
JS

XHTML

PNG

protocols

data

Protocols for the web
 several existing protocols can be used (e.g. FTP)

 limitations / complexity since they were not designed
for the web

 a new application protocol has been defined:

 HTTP

 the application protocol determines which
functions are available (e.g. with FTP only GET and
PUT of files)

Distributed programming I (webprog - dec'09)

© A.Lioy - Politecnico di Torino (2009) C-2

The static web

HTML
pagebrowser server

1. page request

2. read page from disk

pagebrowser
web

server
web

HTTP channel

4. send HTML page

3. HTML page

5. HTML interpretation

Static web
 the web page never changes its content

 … until the author does not change it explicitly

 the content of the page:

 does not depend on the interaction with the user

 does not depend on the information sent by the
client to the server

 does not depend on the time it is requested

 page implemented in HTML / CSS

Static web: pros and cons
 every web page is associated with an HTML file

 (+) maximum efficiency (low load on CPU)

 (+) possibility to perform page caching:

 in RAM (by the server) or on disk (by client or proxy)

 by the server

 by the client

 by proxies

 (+) pages can be indexed by search engines

 (–) data is static

 (–) no adaptation to clients and their capabilities

Distributed programming I (webprog - dec'09)

© A.Lioy - Politecnico di Torino (2009) C-3

Request of a static page

http:// security.polito.it /~lioy/01eny/

http://security.polito.it/~lioy/01eny/

130 192 1 880 / tcp

DNS

130 192 1 8130.192.1.880 / tcp

/u/lioy/public_html/01eny/index.html

file system

URI rewritingweb server

130.192.1.8

Performance model for static web

UA

HTTP
request

transmission
URI parsing +

channel set-up

HTML
interpretation

+ display

HTTP
response

transmission

network

HTTP srv

disk

retrieving
HTML page

user think
time

request
analysis

response
creation

t

Agent, server, proxy and gateway
 User Agent = browser (but also spiders, robots, …)

 Origin Server = provider of the desired service

 intermediate elements may exist between UA and
OS, acting as client and server at the same time:

 gateway

 public interface for servers

 e.g. for security or load balancing

 (delegated) proxy

 works on behalf of the client

 forwards the request to the server or answers
directly by using a cache

 also for authentication

Distributed programming I (webprog - dec'09)

© A.Lioy - Politecnico di Torino (2009) C-4

LAN / Intranet / ISP
(client)

LAN / Intranet / ISP
(server)

Proxy and gateway – scheme

user
t

origin
proxy gateway

Internet

agent server
proxy gateway

cache
(shared)

cache
(RAM)

cache
(private)

Proxy
 caches only static pages

 behaviour:

 transparent = does not modify the request (except
mandatory parts)

 non-transparent = re-writes the request (e.g.
anonymiser)anonymiser)

 UA configuration:

 explicit (requires intervention on the client)

 implicit (requires intelligence in the network)

 proxy hierarchies (e.g. POLITO, IT, EU) are possible

 often used by ISPs to improve clients’ navigation
speed

1. HTTP

2. HTML

3. CSS

Distributed programming I (webprog - dec'09)

© A.Lioy - Politecnico di Torino (2009) C-5

Static web with dynamic pages
 the client evaluates the dynamic content of the

page (script, or Java applet, or Active-X control)

DHTML
pagebrowser

1. page request

2. read DHTML page

server
web

HTTP channel

4. send DHTML page

3. DHTML page

web

5. dynamic part execution
+ HTML interpretation

Static web with dynamic pages
 pages change their content depending on user

interaction

 e.g. context menu popping up when the mouse is
positioned over a specific area

 generically known as DHTML:

 HTML 4 0 or greater HTML 4.0 or greater

 CSS (Cascaded Style Sheet)

 client side scripting languages

 ECMA 262 (EcmaScript Edition 3) implemented
as JavaScript or JScript

 VBScript (only for IE 4.0 or greater)

Dynamic pages: pros and cons
 content presentation is variable

 (+) efficient (low CPU load on servers)

 (–) inefficient (medium-high CPU load on clients,
especially for applets)

 (~) possibility to perform page caching

 (~) pages can be indexed by search engines (but
only the static data …)

 (–) static data

 (–) functionality depends upon client capabilities
(scripting languages, applet types, CPU, RAM, …)

Distributed programming I (webprog - dec'09)

© A.Lioy - Politecnico di Torino (2009) C-6

Dynamic pages: applets
 two types of applet:

 Java applet (requires a JVM in the browser)

 ActiveX control (requires IE + Wintel)

 problems:

 compatibility (which version of language / JVM ?)

 load (require execution)

 security (execution of a full program):

 Java applet executes within a “sandbox”

 activeX installs a DLL (!)

Performance model for static web with
dynamic pages

 no difference w.r.t. static web for the network part
and the server side

 increased computational and memory load on the
client side:

d d th h t h l depends on the chosen technology

 increasing load for

 CSS

 client-side scripts

 Active-X controls

 Java applets

Client-side scripting
 HTML is a page description language

 the only possible activity is following the links

 interactivity is added to HTML pages through some
code to be interpreted at the client (by the
browser):

 NS and SUN invented the LiveWire language later NS and SUN invented the LiveWire language, later
renamed it JavaScript (but it’s not a subset of Java!)

MS invented VBScript (subset of VBA), and later
JScript

 JavaScript and JScript merged in ECMAScript:

 ECMA-262 standard

 popularly known as JavaScript (version >= 1.3)

Distributed programming I (webprog - dec'09)

© A.Lioy - Politecnico di Torino (2009) C-7

Client-side scripting: what’s for?
 dynamically insert elements within HTML pages

 a function written in the scripting language of
choice can be associated to some event triggered
by page interaction:

 e.g. click on a figure

 e g submission of a form

19

 e.g. submission of a form

 execute some code in reaction to an event

 validate data inserted in a form before submitting it
to the server

 it saves useless traffic on the network and
simplifies the application logic on the server side

JavaScript
 interpreted language

 includes a limited set of commands required by
client-side applications to:

 elaborate data inserted in the FORMs included in
the HTML page

 send commands to the browser send commands to the browser
(e.g. open/close windows)

 execute some operations in reaction to an event
triggered by a given user action (event handler)

JavaScript core and extensions

client-side
extensions

Core JavaScript
server-side
extensions

client-side JavaScript

extensions

(e.g. window,
history)

(variables,
functions,

LiveConnect, …)

extensions

(e.g. database,
server mgmt)

server-side JavaScript

Distributed programming I (webprog - dec'09)

© A.Lioy - Politecnico di Torino (2009) C-8

JavaScript and HTML pages
 to send JavaScript applications to the browser:

 insert the JavaScript code inside the html page by
using the tag <script>

 import the code from an external file (with .js
extension) by using <script src=“...”>

 specify a JavaScript expression as the value of an specify a JavaScript expression as the value of an
HTML attribute

 insert a JavaScript expression as an event handler
(DOM event handler) within specific HTML tags

JavaScript: first example

<html>
<head></head>
<body>

i t t "t t/j i t"

29

<script type="text/javascript">
document.writeln("Ciao!")

</script>
</body>
</html>

js1.html

JavaScript: table of squares

<html>
<head>
<title>Table of squares</title>
</head>
<body>
<h1>Table of squares</h1>
<script type="text/javascript"><script type text/javascript >
<!--
var i;
for (i=1; i<20; i++) {

document.writeln("<p>" + i + "^2 = " + i*i + "</p>");
}
// -->
</script>
</body>

</html>

Distributed programming I (webprog - dec'09)

© A.Lioy - Politecnico di Torino (2009) C-9

DOM event handler
 you can associate JavaScript commands to events

through an “event handler”

 syntax:

<TAG . . . eventHandler = “JavaScript_code”>

 where:

 “TAG” is a generic HTML tag

 “eventHandler” is the name of the event handler
(e.g. onclick, onfocus, onblur, onsubmit, onreset,
onchange, onload, onunload)

 “JavaScript Code” is a sequence of JavaScript
commands (often a function call)

JS: second example
<html><head>
<title>Example: JS associated to onclick</title>

<script type="text/javascript">

function makeRed(x){
obj = document.getElementById(x);

32

obj.style.color="red";
}

</script></head><body>

<p id="id1" onclick="makeRed('id1')">
Click on this text to make it red!
</p>

</body></html>
js2.html

JS: third example
 when the same script is used for multiple pages,

you may write it in an external file and link it in the
HTML page

 the “.js” file must

 be a text file

 have a name with max 8 characters

33

 have a name with max 8 characters

 not contain the tag <script>

Distributed programming I (webprog - dec'09)

© A.Lioy - Politecnico di Torino (2009) C-10

JS: third example (2)
<html>
<head>
<script src="js3.js" type="text/javascript">
</script>
</head>
<body>
<p id="id1" onclick="makeRed('id1')">
Click on this text to make it red!</p>
</body>
</html>

js3.html

function makeRed(x) {
obj = document.getElementById(x);
obj.style.color="red"; }

js3.js

DOM (Document Object Model)
 an “object-oriented view” of the HTML page

 provides a map of the web elements using an
object-oriented metaphor

 DOM is a data structure not a language

 used in association with a client-side scripting
(JavaScript VBscript) to manipulate these data(JavaScript, VBscript) to manipulate these data
structures

 W3C tracks and tries to standardise the way the
various scripting languages interact with the data
structures at the basis of HTML

 DOM level 1:

 www.w3.org/TR/1998/REC-DOM-Level-1-19981001

DOM example

Distributed programming I (webprog - dec'09)

© A.Lioy - Politecnico di Torino (2009) C-11

DOM example: object hierarchy

<script ...>
. . .
name = document.forms[0].elements[0].value
alert("Ciao " + name)
. . .

</script>

DOM: giving names to objects
 to simplify access to a given element (instead of

using the hierarchical reference) you may assign a
unique “name” to it:

 attribute “name” (available only for some tags)

 attribute “id” (available for every tag)

 example (“intro” is a reference to a specific example (intro is a reference to a specific
instance of the tag <h1>):

<html>
<body>
<h1 id="intro">Introduction</h1>
. . .
</body>
</html>

DOM object hierarchy
window

|
+--parent, frames, self, top
|
+--location
|
+--history
|
+--document

|
+--forms
| |
| elements (text elements, textarea, checkbox, radio,
| password, select, button, submit, reset, ...)
+--links
|
+--images
|
+--background

Distributed programming I (webprog - dec'09)

© A.Lioy - Politecnico di Torino (2009) C-12

The dynamic web

browser
web

1. resource request
(CGI, ASP, PHP, …)

5. send HTML /
DHTML page

server
web

interpreter
(perl php)

2. forward request to
the correct interpreter

3. read
required file

HTTP channel
(perl, php...)

HD

file
.pl .php...

required file

HD
DB

4. read data
from DB / file

6. dynamic part execution
+ HTML interpretation

Dynamic web
 page is dynamically generated by the server

 its information content chages depending on:

 request sent by the client

 content of a database

 date/time of the request

 techniques to implement the dynamic web:

 CGI

 server-side scripting language (JavaScript/Jscript,
VBScript, PHP, PerlScript, Python, ...)

 SSI (Server Side Include)

 servlet, JSP (Java Server Pages)

Dynamic web: pros and cons
 adaptation of pages to variable conditions:

 input provided by client

 client capabilities

 (+) maximum dynamicity for the data

 (+) optimal adaptability to clients and their
capabilities

 (–) low efficiency (high CPU load)

 (–) impossible to perform page caching if the
selection parameters are not inside the URL (e.g.
are inside cookies)

 possible errors if caching is active

 (–) pages cannot be indexed by search engines

Distributed programming I (webprog - dec'09)

© A.Lioy - Politecnico di Torino (2009) C-13

CGI
 Common Gateway Interface

 http://hoohoo.ncsa.uiuc.edu/cgi/interface.html

 RFC-3875

 the web server:

 starts the CGI application

 passes possible parameters to it:

 through stdin (POST, PUT methods)

 through a modified URL (GET method)

 receives result from stdout

 result must be in web format (HTML/CSS/scripting
client-side)

CGI behavioural scheme

client
(browser)

network

1. select application
and send form data

4. receive HTML page

server
HTTP

CGI interface

2. start CGI application and
parameter passing

3. send HTML page
to the HTTP server and
terminate application

CGI application
(executable or script to be interpreted)

CGI: pros
 general method

 available on every web server (IIS, Apache, …)

 application written in whatever way

 executable file (=more efficient)

 interpreted script (=more flexible)

Distributed programming I (webprog - dec'09)

© A.Lioy - Politecnico di Torino (2009) C-14

CGI: cons
 every call requires activating a process:

 high initialisation cost

 high latency

 creation / destruction of many processes

 memory usage proportional to the number of
processes active at the same time

 communication between the web server and the
application is difficult (different memory spaces)

CGI: cons (II)
 no mechanisms to share resources among CGI

programs

 every access to a resource requires “opening” and
“closing” the resource

 session and transaction concepts do not exist

 the graphic interface of the web application (i e the the graphic interface of the web application (i.e. the
HTML tags) is embedded within the code

 paradigm not fit for applications with several
concurrent users and requiring slow response
times

CGI: possible improvements
 use environment variables to communicate

between the server and the application

 include one or more interpreters in the web server:

 (+) better activation speed

 (+) better communication with the application

 (+) lower memory occupation

 (-) increased size of the server

 pre-activation of the application (in N replicas) and
inclusion in the server of a specific module to
choose a free replica and communicate with it

 FastCGI

Distributed programming I (webprog - dec'09)

© A.Lioy - Politecnico di Torino (2009) C-15

Passing input parameters to CGI
 three ways to transmit forms’ data:

 standard input (when using POST or PUT)

modified URL (when using GET):

 original CGI URL followed by ‘?’ and by the list of
data separated by ‘&’

 the environment variable QUERY_STRING
contains the part of the URL following ‘?’

 command line (when using ISINDEX)

 other information passed to the application through
a set of environment variables (e.g.
REMOTE_ADDR, HTTP_USER_AGENT)

Output generated by CGI
 the application must return valid HTML

 use à " < > …

 the application must also return part of the HTTP
headers; CGI/1.1 specifies the following headers:

 Content-Type:

 MIME type of the response

 Location:

 if a URI, the server sends a redirect to the client

 if a local document, the server sends it to the
client

 Status:

 the server uses it as a status code in its header

HTTP
header

HTTP/1.0 200 OK
MIME-Version: 1.0
Server: Apache/1.3.19

Content Type: text/html

CGI: response generation

server
HTTP

HTTP
body

Content-Type: text/html

<HTML><HEAD></HEAD>
<BODY>
<H1>Ciao!</H1>
</BODY>
</HTML>

CGI
application

Distributed programming I (webprog - dec'09)

© A.Lioy - Politecnico di Torino (2009) C-16

CGI example
 http://security.polito.it/~lioy/cgi/cgiecho

 http://security.polito.it/~lioy/cgi.htm (look at the
difference between GET and POST)

cgic
 ANSI C library fro CGI programming

 http://www.boutell.com/cgic/

 extracts forms’ data, correcting browsers’ errors

 transparent treatment of GET and POST

 read form data or an uploaded file

 functions to set and read cookies

 correct treatment of CR and LF in text form

 extract forms’ data (string, int, real, single and
multiple choices), controlling ranges of numeric
types

 load the CGI env. variables in not null strings

 compatible with every CGI server (U*ix, Win*)

Libwww
 C library used to write HTTP+HTML clients

 also used to write robots

 http://www.w3.org/Library/

Distributed programming I (webprog - dec'09)

© A.Lioy - Politecnico di Torino (2009) C-17

Server-side scripting
 different technologies, all characterised by having,

inside the page file, some scripting code merged
with the template “HTML + client-side scripting”

 ASP (Microsoft)

 VBscript

 JScript JScript

 implementation also for Apache (with PerlScript)

 PHP (open source)

 developed for Apache

 also for IIS

 can be used both as a general scripting language
and for CGI

Server-side scripting (2)
 JSP (Sun), hybrid technology

 the code is embedded in the HTML template (as for
the other technologies for server-side scripting)

 the code includes

 scripting elements (as other server-side
languages)languages)

 directives

 actions (proprietary tags, XML & NS like)

 the pages are translated into servlets by the web
server

SSI (Server Side Include)
 introduce directives in the HTML code in the form

of comments

 if SSI is not supported by the server web, directives
are ignored

 if SSI is supported, in the HTML page returned to
the client, the directives are replaced by the textthe client, the directives are replaced by the text
resulting from the elaboration

 add new environment variables

 do not replace CGI/ASP/..., but introduce the
possibility to add dynamicity to HTML pages
performing simple operations

<!--#command tag1=value1 tag2=value2 ... -->

Distributed programming I (webprog - dec'09)

© A.Lioy - Politecnico di Torino (2009) C-18

SSI (2)
 in IIS, the HTML pages containing SSI directives

must use the extension “.shtm” or “.shtml”

 you can configure web servers to elaborate the SSI
directives also for pages with the extensions
“.htm” or “.html”

 server webserver web

 Apache supports SSI (and XSSI from version 1.2)

 IIS supports only the directive #include of SSI

 it must be inserted in the HTML part

 cannot be produced by ASP code

 in IIS, the other SSI functionalities can be
provided with ASP objects

SSI environment variables
 DOCUMENT_NAME: the name of the current file

 DOCUMENT_URI: the virtual path to this document
(e.g. /docs/tutorials/foo.shtml)

 QUERY_STRING_UNESCAPED: search string sent
by the client, with every special shell character,
preceded by ‘\’preceded by \

 DATE_LOCAL: current date, local time zone;
subject to the parameter timefmt of the command
config

 DATE_GMT: similar to DATE_LOCAL, but relative to
the Greenwich time

 LAST_MODIFIED: date of last modification of the
current document; also subject to timefmt

SSI directives
 #config: allows setting some parameters

 errmsg: message returned in case of error when
parsing of the SSI directives

 timefmt: date and time format; definition string like
the one used by the Unix system function strftime()

 sizefmt: format for the file size sizefmt: format for the file size

 bytes: expressed in bytes

 abbrev: abbreviated format (KB or MB)

<!--#config errmsg="ERROR_MSG" -->

<!--#config timefmt="FORM_STRING" -->

<!--#config sizefmt="bytes" -->

Distributed programming I (webprog - dec'09)

© A.Lioy - Politecnico di Torino (2009) C-19

SSI directives (2)
 #echo: returns the environment variable (tag: var)

passed as a parameter

 #exec: executes a shell command or a CGI script
whose name is passed as parameter and returns
the corresponding output; supported tags:

<!--#echo var="NOME_VARIABILE_ENV" -->

the corresponding output; supported tags:

 cmd: shell command (Unix: /bin/sh, Win32: cmd.exe)
identified by the string

 cgi: CGI script identified by the string (virtual path);
no output mangling but conversion from URI to <A>

<!--#exec cmd="PATH_SHELL_SCRIPT" -->

<!--#exec cgi="VIRT_PATH_CGI_SCRIPT" -->

SSI directives (3)
 #flastmod: returns date and time of last

modification of a file (tag: file) whose name is
passed as parameter

 #fsize: returns the size of a file whose name is
passed as parameter; the format is configurable

<!--#flastmod file="NOME_FILE" --><!--#flastmod file="NOME_FILE" -->

passed as parameter; the format is configurable
with sizefmt; supported tags:

 virtual: virtual path (no access to CGI scripts)

 file: relative physical path starting from the current
directory (no absolute paths, no use of ‘../’)

<!--#fsize virtual="VIRT_PATH_NOME_FIL" -->

<!--#fsize file="REL_PATH_NOME_FILE" -->

SSI directives (4)
 #include: inserts the content of a file in the page

returned to the client; the name of the file is passed
as parameter; supported tags:

 virtual: virtual path (no access to CGI scripts)

 file: relative physical path starting from current
directory (no absolute paths, no use of ‘../’)directory (no absolute paths, no use of ../)

 attention! the included file cannot contain SSI
directives

<!--#include virtual="VIRT_PATH_NOM_FILE" -->

<!--#include file="REL_PATH_NOME_FILE" -->

Distributed programming I (webprog - dec'09)

© A.Lioy - Politecnico di Torino (2009) C-20

SSI examples
 inserts local date and time in standard format:

 inserts local date and time in non-standard format:

<!--#echo var="DATE_LOCAL" -->

<!--#config timefmt="%A %B %d, %Y" -->

<!--#echo var="DATE_LOCAL" -->

 executes a system command (the text <DIR> in the
output of the dir command can lead to wrong
formatting by the browser)

<!--#exec cmd="ls" -->

<!--#exec cmd="dir" -->

SSI examples (2)
 inserts a footer shared with other pages

 inserts the date of last modification of the current
page; solution 1 (if you change the page name, you
must update the directive)

<!--#include file="footer.txt" -->

 inserts the date of last modification of the current
page; solution 2 (the same directive can be used
for all pages)

<!--#config timefmt="%A %B %d, %Y" -->

<!--#flastmod file="tesine.html" -->

<!--#config timefmt="%D" -->

<!--#echo var="LAST_MODIFIED" -->

SSI examples (3)
 set an error message different from the standard

one in case of problems when parsing the SSI
directives

 standard error message; the directive code is
replaced by the following text

<!--#config errmsg="[New error message!]" -->

replaced by the following text

 error message set with the directive

[an error occurred while processing this
directive]

[New error message!]

Distributed programming I (webprog - dec'09)

© A.Lioy - Politecnico di Torino (2009) C-21

Example of SSI/XSSI workflow

<HTML><HEAD><TITLE>
<!--#include virtual="title.inc" -->
</TITLE></HEAD><BODY>
...

Maintained by: <!--#include virtual="author.inc" -->

Last modified: <!--#echo var="LAST MODIFIED" -->

page before elaboration
(as stored on the server)

_

<HTML><HEAD><TITLE>
Esempio di SSI
</TITLE></HEAD><BODY>
...

Maintained by: Antonio Lioy

Last modified: Thursday, 21-Feb-2002 18:53:28 MET

page after elaboration
(as sent to the client)

Example of SSI/XSSI workflow (2)
 content of the file title.inc

 Content of the file author.inc

 NOTE: files included with the directive include or

Esempio di SSI

Antonio Lioy

the result of script execution (directive exec)

 can contain text and HTML

must comply with the HTML character encoding):
e.g. quantità => quantità

 once included, they must comply with the
requirements of HTML/CSS (TAG position, etc.)

Server-side or client-side?
 server-side:

 (pro) higher security

 (con) server overload

 client-side:

 (pro) computation on the client

 (con) client capabilities (functionality and
performance)

 (con) lower security (tampered with by the user)

 in general:

 better server-side for security and functionality

 better client-side to improve performance

 often used together simultaneously

Distributed programming I (webprog - dec'09)

© A.Lioy - Politecnico di Torino (2009) C-22

Server-side vs. client-side
 sometimes they aren’t equivalent

 example (content of prova.asp):

<%

var d=new Date();

var h=d.getHours();

d tMi t ()var m=d.getMinutes();

Response.write(h + ":" + m);

%>

<script type="text/javascript">

var d=new Date();

var h=d.getHours();

var m=d.getMinutes();

document.write(h + ":" + m);

</script>

