
Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-1

Network programming: sockets

Antonio Lioy < lioy@polito.it >

english version created and modified byg y

Marco D. Aime < m.aime@polito.it >

Politecnico di Torino

Dip. Automatica e Informatica

Warning for programmers
 network programming is dangerously close to O.S.

kernel, and therefore:

 It can easily hang the O.S. It can easily hang the O.S.

 verify the results of every operation, without
assuming anything as granted

 APIs can vary in details that are minimal but important

 consider every possible situation to create
“portable” programsportable programs

 we will try to use Posix 1.g

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-2

ISO/OSI, TCP/IP, network programming

7. application
application

application
details

SCTP

6. presentation

5. session

4. transport

3. network

application
(l6: XDR/XML/...

l5: RPC/SOAP/...)

TCP

IPv4, IPv6

UDP

network
programming
interface

user
process

kernel

1. physical

2. data link device driver
and hardware

OSI model IP suite
ref. UNP Intro

communication
details

Exercise – copying data
 copy the content of file F1 (first parameter on the

command line) into file F2 (second parameter on the
command line)

copyfile.c

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-3

Error messages
 must contain at least:

 [PROG] program name

 [LEVEL] error level (info warning error bug) [LEVEL] error level (info, warning, error, bug)

 [TEXT] error signalling, the most specific as possible
(e.g. input file name and line where the problem has
occurred)

 [ERRNO] system error number and/or name (if
applicable)applicable)

 suggested format:

(PROG) LEVEL - TEXT : ERRNO

Error functions
 best to define standard error reporting functions

which accept:

 a format string for the error a format string for the error

 a list of parameters to be printed

 UNP, appendix D.4 (D.3 in 3rd edition)

errno? termination? log level

err_msg no no LOG_INFO
err_quit no exit(1) LOG_ERR
err_ret yes no LOG_INFO
err_sys yes exit(1) LOG_ERR
err_dump yes abort() LOG_ERR

errlib.c

errlib.h

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-4

stdarg.h
 variable list of arguments (ANSI C)

 declared with an ellipsis (. . .) as the last argument of
a functiona function

 arguments used altogether (ap) with special
functions (e.g. vprintf, vfprintf, vsprintf, vasprintf,
vsnprintf), or separately (va_arg); but in the second
case you must know their number by other means

#include <stdarg.h>

void va_start (va_list ap, RIGHTMOST);

TYPE va_arg (va_list ap, TYPE);

void va_end (va_list ap);

stdarg.h usage example
 create a function named my_printf

 … behaving like printf (thus accepting a variable
number of parameters)number of parameters)

 … but printing the string “(MY_PRINTF)” before its
output

va_test.c

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-5

From 32 to 64 bit: problems
 migration from 32-bit to 64-bit architecture has

changed data sizes

 in particular, do not assume anymore that in particular, do not assume anymore that
| int | = | pointer |

 therefore, pay attention to correctly use the
predefined types to avoid problems (e.g. size_t)

ILP32 LP64

char 8 8
short 16 16
int 32 32
long 32 64
pointer 32 64

datasize.c

Exchanging data between
heterogeneous nodes

 problem:

 when exchanging complex data (i.e., not single ASCII
characters), do not assume they are encoded in thecharacters), do not assume they are encoded in the
same way on different nodes

 data encoding depends on HW + OS

 solution:

 use a neutral format (the network format)

 some functions automatically do the conversion some functions automatically do the conversion…

… but often it is explicit task for the programmer

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-6

Sources of data incompatibility
 different floating-point formats (IEEE-754 / non-IEEE)

 alignment of structs on word boundaries

 byte order of integers (little endian or big endian) byte order of integers (little-endian or big-endian)

big-endian little-endian

n = 25810 = 010216

01

02

02

01

memory address X

memory address X+1

byteorder.c

“host to network” functions
 to pass parameters to network functions

 not designed for application data passing

#include <sys/types.h>
#include <netinet/in.h>

uint32_t htonl (uint32_t hostlong);

uint16_t htons (uint16_t hostshort);

i (i)uint32_t ntohl (uint32_t netlong);

uint16_t ntohs (uint16_t netshort);

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-7

Notes on integer types
 sometimes you may still find the old types:

 u_long (= uint32_t)

 u short (= uint16 t) u_short (= uint16_t)

 in old versions of cygwin, they were defined as:

 u_int32_t (= uint32_t)

 u_int16_t (= uint16_t)

 suggestion:

 write programs with the types uint32_t and uint16_t

 when necessary, map them with a conditioned #define

Network addresses
 IPv4 networks directly use 32-bit addresses

 ... not names (e.g. www.polito.it), that are translated
into addresses by DNSinto addresses by DNS

 ... and neither dotted addresses (e.g. 130.192.11.51)

 ... but their 32-bit numerical value

 example: 130.192.11.51

 = 130*224 + 192*216 + 11*28 + 51

 = (((130*256) + 192)*256 + 11)*256 + 51

 = 130<<24 + 192<<16 + 11<<8 + 51

 = 2,193,623,859

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-8

Network address conversion
 for generality, standard functions require numerical

addresses to be expressed in struct format

 to convert numerical addresses from/to strings: to convert numerical addresses from/to strings:

 [IPv4] inet_ntoa() and inet_aton()

 [IPv4 / v6] inet_ntop() and inet_pton()

 other functions (e.g. inet_addr) are deprecated

#include <arpa/inet.h>

struct in_addr { in_addr_t s_addr };

struct in6_addr { uint8_t s6_addr[16]; };

inet_aton ()
 converts an IPv4 address …

 … from “dotted notation” string

 to numerical (network) format … to numerical (network) format

 returns 0 if the address is invalid

 the string may be composed by decimal numbers
(default), octal (start with 0) or hexadecimal (start
with 0x) thus 226.000.000.037 is equal to 226.0.0.31

#include <arpa/inet.h>

int inet_aton (
const char *strptr,
struct in_addr *addrptr

);

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-9

inet_ntoa ()
 converts an IPv4 address …

 … from numerical (network) format

 to “dotted notation” string … to “dotted notation” string

 returns the pointer to the string or NULL if the
address is invalid

 beware! the pointer being returned points to a static
memory area internal to the function

#include <arpa/inet.h>

char *inet_ntoa (
struct in_addr addr

);

Example: address validation
write a program that:

 accepts a dotted notation IPv4 address on the
command linecommand line

 returns its numerical (network) value

 signals an error in case of erroneous format or illegal
address

verify:verify:

 remember that A.B.C.D = A<<24 + B<<16 + C<<8 + D

avrfy2.c

avrfy.c

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-10

inet_pton()
 converts an IPv4 / IPv6 address …

 … from “dotted notation” string

 to numerical (network) format … to numerical (network) format

 returns 0 if the address is invalid, -1 if the address
family is unknown

 address family = AF_INET or AF_INET6

#include <arpa/inet.h>

int inet_pton (
int family,
const char *strptr,
void *addrptr

);

inet_ntop()
 converts an IPv4 / IPv6 address …

 … from numerical (network) format

 to “dotted notation” string … to “dotted notation” string

 returns the pointer to the string or NULL if the
address is invalid

#include <arpa/inet.h>

char *inet_ntop (
int family,
const void *addrptr,
char *strptr, size_t length

);

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-11

Example: address validation
write a program that:

 accepts an IPv4 or IPv6 address on the command
lineline

 tells if it is valid in one of the two IP versions

avrfy46.c

Address sizes
 to size the string representation of v4/v6 addresses,

use macros defined in <netinet/in.h>

#include <netinet/in.h>

#define INET_ADDRSTRLEN 16

#define INET6_ADDRSTRLEN 46

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-12

IPv6 addresses
 128 bit = 8 16-bit groups, separated by “ : ”

 complete form = 1080:0:0:0:8:800:200C:417A

 zeros compression = 1080::8:800:200C:417A zeros compression = 1080::8:800:200C:417A

Data structure initialization (ANSI)
 to handle data structures as byte sequences

 … which may include NUL, and therefore cannot be
handled with “str…” functions (strcpy, strcmp, …)handled with str… functions (strcpy, strcmp, …)

#include <string.h>

void *memset (
void *dest, int c, size t nbyte)void dest, int c, size_t nbyte)

void *memcpy (
void *dest, const void *src, size_t nbyte)

int *memcmp (
const void *ptr1, const void *ptr2, size_t nbyte)

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-13

Data structure initialization (BSD)
 pre-ANSI functions, defined in Unix BSD

 still frequently used

#include <strings.h>

void bzero (
void *dest, size t nbyte)void dest, size_t nbyte)

void bcopy (
const void *src, void *dest, size_t nbyte)

int bcmp (
const void *ptr1, const void *ptr2, size_t nbyte)

Signal management (*)
 signals are asynchronous events

 every received signal corresponds to an implicit
default behaviourdefault behaviour

 often the receiving process is terminated

 few signals are ignored by default

 to change the response to a signal (i.e. its
disposition):

 reset its default behaviour reset its default behaviour

 ignore it

 catch (i.e. intercept) the signal and register a signal
handler

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-14

Timeout
 sometimes timeouts are needed to:

 wait in idle state for a fixed time (sleep)

 know when a certain time elapsed (alarm) know when a certain time elapsed (alarm)

sveglia.c

sleep ()
 starts a timer and suspends the process for the

selected time

 if terminates because the selected time has expired if terminates because the selected time has expired

 returns zero

 if terminates for being interrupted by a signal

 returns the time missing to the requested term

#include <unistd.h>

unsigned int sleep (
unsigned int seconds

);

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-15

alarm ()
 starts a timer which generates the SIGALRM signal at

expiration time

 the process is not suspended the process is not suspended

 note: the default response to SIGALRM is terminating
the receiving process

 a new call replaces the current timer
(e.g. use alarm(0) to clear the current timer)

 (!) unique timer for all processes in the group (!) unique timer for all processes in the group

#include <unistd.h>

unsigned int alarm (
unsigned int seconds

);

Signal management
 pay attention to semantic differences in various

operating systems

 for ‘signum’ use the signal logical names (SIGCHLD, for signum use the signal logical names (SIGCHLD,
SIGSTOP, …)

 the handler can be:

 a user-defined function

 SIG_IGN (ignore the signal)

 SIG DFL (default behaviour)

#include <signal.h>

typedef void Sigfunc(int);

Sigfunc *signal (int signum, Sigfunc *handler);

 SIG_DFL (default behaviour)

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-16

signal() function
 signal() is a pre-POSIX function

 its behaviour varies across Unix versions, and also
varied historically across different releasesvaried historically across different releases

 the only portable use is setting a signal’s disposition to
SIG_DFL or SIG_IGN

 POSIX has defined the new sigaction() function

most implementations of signal() now call sigaction()

 see UNPv3 chap 5 8 see UNPv3 chap. 5.8

Notes on signals
 SIGKILL and SIGSTOP cannot be intercepted nor

ignored

 SIGCHLD and SIGURG are ignored by default SIGCHLD and SIGURG are ignored by default

 in Unix, use kill –l to list all signals

 in Unix, signals can be generated also manually via

kill -signal pid

 for example, to send SIGHUP to process 1234:

kill -HUP 1234

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-17

Standard signals (POSIX.1)
name value action notes
HUP 1 term hangup of controlling terminal or death

of controlling processof controlling process
INT 2 term interrupt from keyboard

QUIT 3 core quit from keyboard
ILL 4 core illegal instruction

ABRT 6 core abort signal from abort()
FPE 8 core floating-point exception
KILL 9 term kill

SEGV 11 core invalid memory reference
PIPE 13 term broken pipe (write to pipe w/o readers)

ALRM 14 term timer signal from alarm()
TERM 15 term termination signal

Standard signals (POSIX.1) – cont.
name value action notes
USR1 16/10/30 term user-defined signal 1
USR2 17/12/31 term user-defined signal 2USR2 17/12/31 term user-defined signal 2
CHLD 18/17/20 ignore child stopped / terminated
CONT 25/18/19 cont continue if stopped
STOP 23/19/17 stop stop process
TSTP 24/20/18 stop stop from tty
TTIN 26/21/21 stop tty input for background process
TTOU 27/22/22 stop tty output from background process

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-18

kill()
 to send signals between processes

 returns 0 if OK, -1 in case of error

 (pid=0) sends signals to all processes in the group (pid=0) sends signals to all processes in the group

 often used to send signals to all the own children

 (pid<0) sends signals to all processes in the group “–
pid”

 (signum=0) does not send any signal but does error
control (inexistent process or group)control (inexistent process or group)

#include <sys/types.h>
#include <signal.h>

int kill (pid_t pid, int signum);

Socket
 is the base primitive for TCP/IP communications

 is the endpoint of a communication

 support channel oriented communications: support channel-oriented communications:

 connected sockets (a pair of connected sockets
provides a bidirectional interface of pipe type)

 one-to-one model

 support message-oriented communications:

 connectionless sockets

many-to-many model

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-19

Socket types
 three fundamental types:

 STREAM socket

 DATAGRAM socket DATAGRAM socket

 RAW socket

 typically:

 stream and datagram used at application level

 raw used for protocol development (access to every
field of the IP packet, including the header)

Stream socket
 octet stream

 bidirectional

 reliable reliable

 sequential flow

 flow without duplications

 messages with unbounded size

 sequential file interface

 usually used for TCP channels

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-20

Datagram socket
 message-oriented

 message = unstructured set of octects (binary blob)

 bidirectional bidirectional

 not sequential

 not reliable

 messages possibly duplicated

 messages limited to 8 KB

 dedicated interface (message based)

 usually used for UDP or IP packets

Raw socket
 provides access to the underlying communication

protocol

 usually of datagram type usually of datagram type

 complex programming interface (and often OS
dependent): not designed for distributed application
programmers

 used for protocol development

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-21

Communication domain
 every socket is defined within a communication

domain

 a domain is an abstraction that implies: a domain is an abstraction that implies:

 an addressing structure: the “Address Family” (AF)

 a protocol suite implementing the sockets within the
domain: the “Protocol Family” (PF)

 by convention, it is frequent to use AF only (because
of bi-univocal correspondence with PF)of bi univocal correspondence with PF)

Binding
 sockets are created without any identifier

 no process can refer or access a socket without an
identifieridentifier

 before being used, a socket must be associated with
an identifier

 = network address (for network sockets)

 = logical name (for OS sockets)

 “binding” sets the socket address and makes the “binding” sets the socket address and makes the
socket accessible to the network

 binding depends on the protocol being used

 usually, only servers do binding explicitly (for clients
the address is set by the OS based on routing)

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-22

Association (INET domain)
 to let two processes communicate on a network, an

association must exists between them

 in the AF INET domain an association is a quintuple in the AF_INET domain an association is a quintuple

 every quintuple must be unique

protocol (TCP, UDP, …)

(l l) IP dd(local) IP address

(remote) IP address

(local) port

(remote) port

Association (Unix domain)
 two process on the same Unix node can

communicate using a local association

 in the AF UNIX domain, associations are triples in the AF_UNIX domain, associations are triples

 every triple must be unique

protocol (channel, msg)

pathname (remote)

pathname (local)

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-23

Associations
 created with the system call bind() which actually

creates one half of the association

 the half-association is then completed: the half association is then completed:

 by the server with accept(), that removes a request
form the queue and creates a new socket dedicated to
the connection; it’s a blocking call

 by the client with connect(), that may also assign the
local port (and address); it’s a blocking call

Connected sockets (stream)
 creating new connections is typically an asymmetric

operation

 every process creates its own endpoint with socket() every process creates its own endpoint with socket()

 the server:

 assigns an identifier to the socket using bind()

 starts listening on the socket by calling listen()

 when a connection request arrives, accepts it with
accept() which removes the request from the queueaccept() which removes the request from the queue
and creates a new socket dedicated to the connection

 the client connects to the server with connect(), that
also performs implicit binding by assigning the local
port (and address)

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-24

Stream socket: pre-connection

IPA IPB

Client:
1 creates a socket

Server:
1 creates a socket

socket socket

80

queue

1. creates a socket 1. creates a socket
2. associates a port

to the socket
3. starts listening

on the queue

Stream socket: connection request

IPA IPBconnection
request

socket

Client:
1. requests connection

Server:
1. receives connection

1052

socketqueue

80

queue
request

to server’ s port request

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-25

Stream socket: established connection

IPA IPBvirtual
channel

socket

S

1052

socket

80

socket

80

queue
channel

queue

Server:
1. accepts the request
2. completes the channel

with a new socket
3. returns waiting on the queue

of the original socket

CLIENT

SERVER

Stream socket: logical flow
s = socket ()

bind (s)

listen (s)

new = accept (s)

read (new)waits for
requests

connect (x)

write (x)

x = socket ()

waits for
connections

3-way
handshake

channel

write (new)
sends

response

read (x)

close (new)

computes
response

read (x)

close (x)

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-26

CLIENTSERVER

Datagram socket: logical flow

socket () socket ()

bind ()

recvfrom ()
waits for
messages

computes

datagram

bind ()

sendto ()

datagram
sendto () recvfrom ()

p
response

sends
response

close ()

Datagram socket - differences
 allow:

 exchanging data without connection (messages
include destination and source addresses)include destination and source addresses)

 sending from one socket to multiple destinations

 receiving on one socket from multiple destinations

 therefore, in general, the model is “many-to-many”

 the ‘client’ and ‘server’ terms are only meaningful for
the application levelthe application level

 there are no differences in the calls made by the
various processes involved in the communication
(symmetric)

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-27

Socket in C

The gcc compiler
 one of the best compilers

 use the flag " – Wall –Werror" to avoid missing
potential error sourcespotential error sources

 attention: the warning for using uninitialized
variables is triggered only when optimising the
program (at least with –O1)

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-28

Notes for compiling
 in Solaris > 7, you need to link several libraries:

 libsocket

 base socket functions base socket functions

 libnsl (name services library)

 inet_addr (and more)

 libresolv (name resolver library)

 h_errno, hstrerror (and more)

gcc –lsocket –lnsl –lresolv ...

make and makefile
 rules in files named “Makefile”

 target: dependencies ...

 TAB command to create the target TAB command_to_create_the_target

 $ make [target]

 the first target is the default one

 example:
prova.exe: prova.o mylib.o

gcc –o prova.exe prova.o lib.o

prova.o: prova.c mylib.h

gcc –o prova.o –c prova.c

mylib.o: mylib.c mylib.h

gcc –o mylib.o –c mylib.c

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-29

Dependencies
 gcc –MM file

 analyses file and creates its list of dependencies in
the make format, ignoring system headersthe make format, ignoring system headers

 very useful to automatically create and include
dependencies (with the command "make depend")

depend:

rm -f depend txtrm -f depend.txt

for f in $(SRC); do gcc -MM $$f>>depend.txt; done

dependencies

-include depend.txt

Application data encoding
 ASCII encoding:

 sscanf / snprintf to read / write ASCII data (only for C
strings, i.e. terminated by \0)strings, i.e. terminated by \0)

memcpy (not strings but the length is known)

 binary encoding:

 hton / ntoh / XDR for reading / writing binary data

 examples (n10=2252):

ASCII (4 bytes)

'2' '2' '5' '2'

0x32 0x32 0x35 0x32

bin (16 bits)

0x08 0xCC

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-30

Application data: formats
 fixed format:

 read / write the specified number of bytes

 convert bytes according to their encoding convert bytes according to their encoding

 variable format (with separators and terminator):

 read up to the terminator, then convert

 pay attention to overflow in case terminator is missing

 variable format (TLV = tag-length-value):

 read N bytes according to length

 convert according to the format specified by tag

Unix socket descriptor
 standard file descriptor referred to a socket instead

of a file

 can be used for read or write operations with normal can be used for read or write operations with normal
direct I/O functions

 it’s possible to use the system calls working on files

 close, read, write

 exception: seek

 other system calls are available for the peculiar other system calls are available for the peculiar
functions of sockets (i.e. not applicable to files)

 send, recv, …

 sendto, recvfrom, …

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-31

socket()
 creates a socket

 returns the socket descriptor in case of success,
-1 in case of error1 in case of error

 family = constant with type AF_x

 type = constant with type SOCK_x

 protocol = 0 (except in raw sockets)

#include <sys/types.h>

#include <sys/socket.h>

int socket (
int family, int type, int protocol)

socket(): parameters
 family:

 AF_INET

 AF INET6 AF_INET6

 AF_LOCAL (AF_UNIX)

 AF_ROUTE

 AF_KEY

 type:

 SOCK_STREAM

 SOCK_DGRAM

 SOCK_RAW

 SOCK_PACKET (Linux, access to layer 2)

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-32

Possible combinations

AF_INET AF_INET6 AF_LOCAL AF_ROUTE AF_KEY

SOCK_STREAM TCP TCP yes

SOCK_DGRAM UDP UDP yes

SOCK_RAW IPv4 IPv6 yes yes

socket() : wrapper
 useful to write test once and reuse, instead of

repeating them every time

int Socket (int family, int type, int protocol)

{

int n;;

if ((n = socket(family,type,protocol)) < 0)

err_sys ("(%s) error - socket() failed", prog);

return n;

}

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-33

The “wrapper” concept
 given a function to “wrap”, create a new function:

 with the same name but starting with capitalised letter

 with the same parameters with the same parameters

 of void type (not when the return value is the response
of the function), since controls are made within the
new function

 do not invent “exotic” controls; just read carefully
the function description and run the controls on thethe function description and run the controls on the
return value (or on other mechanisms used for error
signalling)

Wrapper example
 in place of strcpy() always prefer strncpy()

 … but also this function can generate errors:

char *strncpy (char *DST, const char *SRC, size_t LENGTH);

DESCRIPTION

'strncpy' copies not more than LENGTH characters from the
string pointed to by SRC (including the terminating null
character) to the array pointed to by DST.

RETURNS

This function returns the initial value of DST.

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-34

Wrapper for strncpy

void Strncpy (
char *DST, const char *SRC, size_t LENGTH)

{{

char *ret = strncpy(DST,SRC,LENGTH);

if (ret != DST)

err_quit(
"(%s) library bug - strncpy() failed", prog);

}}

Using “wrapped” functions
 when an error occurs, typically the wrapper reports it

and terminates the calling process

 if the caller is a child of a concurrent server, there is if the caller is a child of a concurrent server, there is
usually no problem

 if the caller is the parent process of a concurrent
server or it is a client that should continue
interacting with the user, then terminating the caller
may not be the correct thing to do ...

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-35

Socket addresses
 use the sockaddr struct which is the address of a

generic socket (Internet, Unix, …)

 actually, it is just an overlay for the specific cases actually, it is just an overlay for the specific cases
(sockaddr_in, sockaddr_un, …)

 defined in <sys/socket.h>

struct sockaddr {
uint8_t sa_len; // not mandatory
sa_family_t sa_family; // AF_xxx
char sa_data[14] // identifier

}

Internet socket addresses
 level 3 network address (in network format)

 level 4 port (in network format)

 the level 4 protocol is defined implicitly based on the the level 4 protocol is defined implicitly based on the
socket type (STREAM, DATAGRAM)

struct sockaddr_in
{
uint8 t sin len; // not mandatoryuint8_t sin_len; // not mandatory
sa_family_t sin_family; // AF_INET
in_port_t sin_port; // TCP or UDP port
struct in_addr sin_addr; // IP address
char sin_zero[8] // unused

}

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-36

connect()
 create a connection between a “local” socket and a

“remote” socket, specified through its identifier
(=address and port)

 in practice it starts the TCP 3-way handshake

 the OS automatically assigns to the local socket a
proper identifier (address and port)

 returns 0 if OK, -1 in case of error

#include <sys/socket.h>

int connect (int sockfd,

const struct sockaddr *srvaddr, socklen_t addrlen)

bind()
 assigns an identifier (address and port) to a socket

 returns 0 in case of success, -1 in case of error

 if the IP address is not specified the kernel assigns it if the IP address is not specified, the kernel assigns it
based on the received SYN packet

 if the port is not specified, the kernl assigns an
ephemeral port

 INADDR_ANY to specify any address

#include <sys/socket.h>

int bind (int sockfd,
const struct sockaddr *myaddr,
socklen_t myaddrlen)

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-37

listen()
 transforms a socket from active to passive

 specifies the size of the queue for pending requests
(= sum of the two queues, plus sometimes a 1.5(sum of the two queues, plus sometimes a 1.5
adjusting factor)

 critical factor for:

 high load servers

 resist to "SYN flooding” attacks

 returns 0 in case of success 1 otherwise returns 0 in case of success, -1 otherwise

#include <sys/socket.h>

int listen (int sockfd, int backlog)

client server

Size of which queue?

t()
incomplete

accept()
called

connect()
called

connect()

SYN k
ACK j+1

p
request queue
(SYN_RCVD)

SYN j

RTT

RTT

connect()
returns

ACK k+1

completed
request queue

(ESTABLISHED)

accept()
returns

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-38

Notes on “backlog” parameters
 Linux (starting from 2.2) and Solaris (from 2.9) use

the SYN_COOKIE mechanism and thus the parameter
specifies only the length of the Established queue

 the length of the SYN_RCVD queue:

 automatically sized (256-1024 entries) based on
available RAM

 configurable with sysconf or …/ip/…

 infinite when SYN COOKIE is active (default from infinite when SYN_COOKIE is active (default from
kernel 2.4)

on SYN_COOKIE see https://cr.yp.to/syncookies.html

listen() : wrapper
 useful to avoid fixing the queue dimension in the

code but make it configurable (via arguments or
environment variables)

 for example, with a wrapper:

#include <stdlib.h> // getenv()

void Listen (int sockfd, int backlog)
{
char *ptr;char *ptr;

if ((ptr = getenv("LISTENQ")) != NULL)
backlog = atoi(ptr);

if (listen(sockfd,backlog) < 0)
err_sys ("(%s) error - listen failed", prog);

}

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-39

Reading environment variables in C
 use the function getenv()

 receives in input the name of the environment
variable as a stringvariable as a string

 returns the pointer to the string associated to the
value

 ... or NULL if the variable is undefined
#include <stdlib.h>

char *getenv (const char *varname);char getenv (const char varname);

Environment variable listing in C
 “envp” parameter passed to main() function

 supported by MS-VC++ and gcc … but not ANSI

 envp is an array of string pointers envp is an array of string pointers

 every string contains the pair:

 VARIABLE_NAME=VARIABILE_VALUE

 the last element in the array has NULL value

 necessary, since there is no parameter to report
the number of the strings

int main (int argc, char *argv[], char *envp[]);

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-40

Setting environment vars (in BASH)
 export VARNAME=VARVALUE

 adds a variable to the execution environment

 export n VARNAME export –n VARNAME

 removes the variable from the execution environment

 env VARNAME=VARVALUE COMMAND

 executes the command temporarily inserting the
variable in its environment

 printenv [VARNAME]

 lists all environment variables or the selected one

 note: “export” is built-in in bash while “env” and
“printenv” are external commands (in /usr/bin)

Examples of reading environment
variables

 printevar.c prints the environment variable value
whose name is given on the command line

 prallenv.c prints names and values of all defined prallenv.c prints names and values of all defined
environment variables

prallenv.c

printevar.c

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-41

accept()
 retrieves the first connection available in the

completed request queue

 blocks in case there are no pending requests blocks in case there are no pending requests
(exception: if the socket is not blocking)

 returns a new socket descriptor, connected with the
client’s one

 side effect: returns in cliaddr the identifier of the
connected client (but when you provide NULL)(y p)

#include <sys/socket.h>

int accept (int listen_sockfd,

struct sockaddr *cliaddr, socklen_t *addrlenp)

close()
 immediately closes the socket

 the socket is no more usable by the process, but the
kernel will try to send any data already queued to bekernel will try to send any data already queued to be
sent, before closing the TCP channel

 behaviour configurable with SO_LINGER

 returns 0 when terminating with success, -1 in case
of error

#include <unistd.h>

int close (int sockfd)

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-42

Stream communication
 use unbuffered I/O functions to avoid

 waiting indefinitely (input)

 terminating prematurely in case of NUL (output) terminating prematurely in case of NUL (output)

 never use the standard I/O library <stdio.h>

 in particular, use the system calls read() and write():

 work on file descriptors

 returns the number of bytes that have been read /
written, -1 in case of error

#include <unistd.h>

ssize_t read (int fd, void *buf, size_t nbyte)

ssize_t write(int fd, const void *buf, size_t nbyte)

Result of a read on a socket
 greater then zero: number of received bytes

 equal to zero : closed socket (EOF)

 lower then zero : error lower then zero : error

 attention:

 due to fragmentation and buffering …

… the number of read bytes can be lower than
expected

 it is useful to write functions that handle this problem
automatically

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-43

“Safe” read / write functions
 readn() and writen() read and write exactly N bytes,

if not incurring in errors or EOF

 readline() reads until it finds LF or fills the buffer, if readline() reads until it finds LF or fills the buffer, if
not incurring in errors or EOF

 reference: UNP, fig. 3.14, 3.15, 3.16

 note: readline() must necessarely read bytes one by
one, but uses another (private) function to fill a buffer
more efficiently

my_read()

read(MAXLINE)

readline()
buf

EOL?

readn, writen, readline
 the functions with capitalised initial automatically

perform error control

ssize_t readn (int fd, void *buf, size_t nbyte)

ssize_t Readn (int fd, void *buf, size_t nbyte)

ssize_t writen(int fd, const void *buf, size_t nbyte)

void Writen (int fd, const void *buf, size_t nbyte)

ssize_t readline (int fd, void *buf, size_t nbyte)

ssize_t Readline (int fd, void *buf, size_t nbyte)

sockwrap.c

sockwrap.h

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-44

Using errlib and sockwrap
 sockwrap uses errlib to signal errors

 errlib requires that the variable “prog” exists and is
initialised to the name of the program being executedinitialised to the name of the program being executed

#include "errlib.h"

#include “sockwrap.h"

char *prog;

int main (int argc, char *argv[])
{
. . .
prog = argv[0];
. . .

}

Attention!
 since my_read uses a local buffer, the readline

functions aren’t re-entrant:

 they cannot be used in a multiprocess or multithread they cannot be used in a multiprocess or multithread
environment

 for this cases, we should develop re-entrant functions
that allocate externally the buffer for my_read

 calls to readline cannot be intermixed with calls to calls to readline cannot be intermixed with calls to
normal read functions because they "read ahead"
and therefore predate data that could be needed by a
different read

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-45

Example: TCP daytime client & server
 the daytime service (tcp/13):

 provides current date and time in user friendly format

 responses are terminated with CR+LF responses are terminated with CR+LF

 develop a client connecting to the daytime server
whose address is specified on the command line

 develop an (iterative) server that waits for service
requests and provides date and time, identifying the
connected clientconnected client

daytimetcps.c

daytimetcpc.c

Exercises
 remove listen() from server:

 what happens? why?

 leave listen() but remove bind(): leave listen() but remove bind():

 what happens? why?

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-46

Retrieving information on sockets
 to know address and port

 of the local side: getsockname()

 of the remote side : getpeername() of the remote side : getpeername()

 return 0 if OK, -1 in case of error

#include <sys/socket.h># y /

int getsockname (int sockfd,
struct sockaddr *localaddr, socklen_t *addrp)

int getpeername (int sockfd,
struct sockaddr *peeraddr, socklen_t *addrp)

Information on sockets: example

IPA IPBvirtualA

socket

1052

B

socket

80

socket

80

coda
channel

queue

80

getpeername(s) → (IPA,1052)
getsockname(s) → (IPB,80)

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-47

Implicit or explicit binding?
 consider the following case:

multi-homed web server (N network addresses)

 one different site per each address one different site per each address

 if server binds to INADDR_ANY:

 a single listening process

 demultiplexing performed by the server

 if servers binds to each of the N addresses:

 N listening processes

 demultiplexing performed by the TCP/IP stack

weak-end / strong-end model
 in case of multi-homed server …

 “strong end model” = kernels that accept packets on
an interface only if DST IP equals to interface’s IPan interface only if DST_IP equals to interface s IP

 “weak end model” = kernels that accept packets only
if DST_IP equals to an IP of any server interface

dst = 10.1.1.1

??

if_1 if_2

server

10.1.1.1192.168.1.1

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-48

Porte dedicated to servers and clients
 IANA

 1-1023 = well-known ports

 1024 49151 = registered ports 1024-49151 = registered ports

 49152-65535 = dynamic / ephemeral ports

 UNIX

 1-1023 = reserved to processes with EUID=0

 513-1023 = reserved to privileged clients (r-cmds)

 1024-5000 = BSD ephemeral ports (few!)

 5001-65535 = BSD servers (non-privileged)

 32768-65535 = Solaris ephemeral ports

 Windows does not perform any control

The port “zero”
 the port 0 is reserved and cannot be used for any

TCP or UDP connection

 in the Unix socket interface the value zero can be in the Unix socket interface the value zero can be
used to request a random dynamic port to the OS:

 usually useful only with UDP

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-49

recvfrom() and sendto()
 used for datagram sockets, although they are usable

also for stream sockets

 returns the number of bytes that have been read / returns the number of bytes that have been read /
written, -1 in case of error

 the “flags” parameter is usually zero (more details
follow)

#include <sys/socket.h>

i f (i kfdint recvfrom (int sockfd,
void *buf, size_t nbytes, int flags,
struct sockaddr *from, socklen_t *addrlenp)

int sendto (int sockfd,
const void *buf, size_t nbytes, int flags,
const struct sockaddr *to, socklen_t addrlen)

Receiving data with recvfrom() (*)
 receiving zero data is OK (=empty UDP payload) and

does not indicates EOF (it does not exist with
datagram sockets!)

 the “from” argument upon return tells us who sent
the datagram

 similar to the one returned by accept()

 using NULL as the “from” parameter indicates that
you are not interested in knowing the protocol
address of who sent the data

… but then you don’t know who sent the datagram
and whom to respond to (!), apart receiving this
information at application level

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-50

Binding with datagram sockets (*)
 usually the client does not call bind()

 the kernel assigns automatically a port to the socket
the first time it is used; i.e. when calling sendto()the first time it is used; i.e. when calling sendto()

 the kernel assigns automatically an address to the
socket based on the outgoing interface; i.e.
independently for every sent packet

 alternatively the client can call bind() to the port 0 alternatively the client can call bind() to the port 0
that instruct the kernel to assign an ephemeral
random port

Example: UDP daytime client & server
 the daytime service (udp/13) provides current date

and time in user friendly format

 the server sends date and time in a UDP packet to the server sends date and time in a UDP packet to
every client sending any packet (even empty) to it

 develop a client that requests date and time to the
daytime server specified on the command line and
prints the returned data

 develop a (iterative) server that waits for service
requests and provides date and time, while
identifying the requesting client

daytimeudps.c

daytimeudpc.c

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-51

cygwin: known problems
 sendto() with a zero sized buffer does not send

anything (it should send UDP with a zero-length
payload)

Problems with datagram sockets
 problem 1: since UDP is not reliable, the client risks

to block indefinitely on reception, i.e. on recvfrom()

 using timeouts not always solves the problem: using timeouts not always solves the problem:

OK if resending the request is not a problem

 unacceptable otherwise (e.g. debit or credit
transaction)

 problem 2: how to verify that the response actually problem 2: how to verify that the response actually
comes from the server we send the request to?

 need to filter the responses either at user or at kernel
level

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-52

Problem 1
enum { normal, clock_rung } state;

l k () {clock (...) {

state = clock_rung;

}

signal (SIGALRM, clock);
do {{

sendto (...);
state = normal; alarm (timeout);
recvfrom (...);
alarm (0);

} while (state == clock_rung);

Problem 1: notes
 the solution with alarm is subject to a race condition

(data arriving simultaneously with expiration of the
timeout)

 with a “long” timeout, the probability is low but it
cannot be excluded

 it is better to set a timeout directly on the socket with
the SO_RCVTIMEO option or to use select()

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-53

Verification of datagram responses
 binary comparison between the responder’s address

and the original destination’s one

 possible problems with multi-homed servers possible problems with multi homed servers

 solution 1: verify not the address but the DNS name
(works only with registered servers)

 solution 2: the server explicitly binds to all its
addresses (bind) and then waits on them all (select)

n = recvfrom(sfd,*buf,nbyte,0,(SA*)&from,&fromlen);

if ((fromlen == serverlen) &&
(memcmp(&servaddr,&from,serverlen) == 0))

// accepted response

Asynchronous errors
 when an error occurs to a UDP transmissions (e.g.

port unreachable), an ICMP error packet is generated

 … but the sendto() function has already terminated … but the sendto() function has already terminated
with OK status

 … and therefore the kernel does not know which
application the error should be forwarded to (and in
which way!)

 possible solutions:

 use connected (!) datagram sockets

 intercept ICMP errors with an ad-hoc daemon

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-54

Connected datagram sockets
 it is possible to call connect() on a datagram socket

to specify once for all the intended peer

 consequences: consequences:

 can use write() or send() instead of sendto()

 can use read() or recv() instead of recvfrom()

 asynchronous errors are forwarded to the process
controlling the socket

 the kernel automatically performs response filtering the kernel automatically performs response filtering
and accepts only packets originating form the peer

 in case of repeated communication with the same
peer, it leads to fair performance improvement

Disconnecting a datagram socket
 it is possible to perform a second connect() towards

another address to change the connection

 prohibited for stream sockets prohibited for stream sockets

 to disconnect completely (i.e. return back to a non-
connected socket), call connect() towards an
unspecified address using AF_UNSPEC

 in this case, you will receive an EAFNOSUPPORT in this case, you will receive an EAFNOSUPPORT
error which can be safely ignored

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-55

Concurrent Servers

Processes in Unix
 duplication of the application: fork()

 possible execution of a new image: exec()

A A’

exec (B)

status = fork ()

status = PID status = 0

B. . .

B

. . .

. . .

. . .

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-56

fork()
 generates a new process …

 … which shares image and execution environment
with the process that called fork()with the process that called fork()

 return status:

 -1 in case of error

 0 to the new process, or “child”

 the PID of the new process to the “parent”

#include <unistd.h>

pid_t fork (void);

getpid(), getppid()
 child can retrieve the parent’s PID using getppid()

 note: the parent is unique for every process

 to retrieve the process’ own PID use getpid() to retrieve the process’ own PID use getpid()

 return status:

 -1 in case of error

 the desired PID

#include <unistd.h>

pid_t getpid (void);

pid_t getppid (void);

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-57

exec functions
 replace the image being executed with a new image

 return -1 in case of error

 L functions pass arguments as a list of variables L functions pass arguments as a list of variables,
terminated by NULL

 V functions pass arguments as an array of pointers,
with NULL as the last element

 P functions locate the image based on PATH, the
others require the full pathnameothers require the full pathname

 E functions receive environment variables as an
array of pointers, with a last NULL element; the
others use the external variable “environ”

Functions execv() and execl() (*)
#include <unistd.h>

int execv (const char *filename,
char *const argv[]);g []);

int execve (const char *filename,
char *const argv[], char *const envp[]);

int execvp (const char *pathname,
char *const argv[]);

int execl (const char *filename,
const char *arg0, ..., (char *)NULL);g , , ());

int execle (const char *filename,
const char *arg0, ..., (char *)NULL,
char *const envp[]);

int execlp (const char *pathname,
const char *arg0, ..., (char *)NULL);

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-58

exec functions
 usually, only execve() is a system call

create

execlp (file, arg, …, 0)

execl (path, arg, …, 0)

create
argv[]

execv (path, argv)

execvp (file, argv)

create
argv[]

dd

convert from
file to path

execle (path, arg, …, 0, envp) execve (path, argv, envp)

create
argv[]

add
envp[]

system
call

Communicating through exec()
 explicit parameter passing:

 through the arguments

 through the environment variables through the environment variables

 file descriptors (files and sockets) remain open, if the
caller does not use fcntl() to set the flag
FD_CLOEXEC which makes them close when
executing an exec

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-59

Concurrent server skeleton (I)

pid_t pid; // child PID

int listenfd; // listening socket

int connfd; // communication socket

// create the listening socket

listenfd = Socket(...);

servaddr = ...

Bind (listenfd, (SA*)&servaddr, sizeof(servaddr));

Listen (listenfd, LISTENQ);

Concurrent server skeleton (II)
// server execution loop

while (1)
{{

connfd = Accept (listenfd, ...);

if ((pid = Fork()) == 0)
{

Close(listenfd);

doit(connfd); // the child performs its work

Close(connfd);

exit(0);
}

Close (connfd);
}

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-60

The importance of calling close()
 if the parent forgets to close the connection socket

…

 it rapidly exhausts the descriptors it rapidly exhausts the descriptors

 the channel with the client remains open even when
the child has terminated and has closed the
connection socket

 notes:

 the close() function does not close the socket but it the close() function does not close the socket but it
just decrements its reference count

 only when REFCNT becomes zero, the socket is
actually closed (i.e. FIN is sent in case of TCP
sockets)

serverclient

Closing connections

performs “active close” performs “passive close”

CLOSE_WAIT

ESTABLISHED

FIN_WAIT_1

FIN WAIT 2

ACK m+1

FIN m
ESTABLISHED

close()

read() returns 0

close()

LAST_ACK

CLOSED

FIN_WAIT_2

TIME_WAIT ACK n+1

FIN n
close()

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-61

The state TIME_WAIT
 the state TIME_WAIT is exited only by timeout:

 duration equal to 2 x MSL (Max Segment Lifetime)

MSL = 2 minutes (RFC 1122) 30 seconds (BSD)MSL = 2 minutes (RFC-1122), 30 seconds (BSD)

 therefore timeout = 1…4 minutes

 it exists to solve two problems:

 to implement the full-duplex closure of TCP

 the last ACK may get lost and the client receive a
new FIN

 to allow expiration of duplicated packets

 they may be interpreted as part of a new
incarnation of the same connection

Child termination
 when a child process terminates, the SIGCHLD signal

is sent to the parent

 default reaction: default reaction:

 ignored

… which generates a “zombie” process

 zombies are inherited and eliminated by the init
process only when the parent process terminates
(but usually servers never terminate …)(but usually servers never terminate …)

If we want to avoid zombies,
we have to wait for our children.

-- W.R.Stevens

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-62

wait() and waitpid()
 return:

 the child PID; 0 or -1 in case of error

 the termination status of the child the termination status of the child

 wait() is blocking

 waitpid():

 not blocking if using the option WNOHANG

 allows specifying the PID of a particular child
(-1 to wait for the first that terminates)

#include <sys/wait.h>

pid_t wait (int *status);

pid_t waitpid (pid_t pid, int *status, int options);

Intercepting SIGCHLD
 if more children terminate “simultaneously” only one

SIGCHLD is generated, thus you must wait them all

/#include <sys/wait.h>

void sigchld_h (int signum)
{
pid_t pid;
int status;

while ((pid = waitpid(-1,&status,WNOHANG)) > 0)
#ifdef TRACE#ifdef TRACE

err_msg (
"(%s) info - figlio %d terminato con status %d\n",

prog, pid, status)
#endif
; // pay attention to this column

}

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-63

Interrupted system calls
 when a process executes a “slow” system call (i.e.

one that may block the caller)

 … it may unblock not because the system call has … it may unblock not because the system call has
terminated

 … but because a signal has arrived; this case is
characterised by errno == EINTR (or ECHILD)

 you should then handle this case and repeat the
system call (this is already performed by sockwrap
functions)

 it is a very relevant case with accept() in servers

 ATTENTION: you can repeat every system call but
connect(); in this case you should use select() to
wait for the connection to complete

Concurrent server: example
 develop a concurrent server listening on port

tcp/9999 that receives text lines containing two
integers and returns their sum

 develop a client that:

 reads text lines from standard input

 sends them to the port tcp/9999 of the server specified
on the command line

 receives the response lines and prints them on receives the response lines and prints them on
standard output

addtcpc.c

addtcps.c

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-64

Application robustness

Slow servers
 if the server is slow or overloaded …

 … the client can complete the 3-way handshake and
then terminate the connection (RST)then terminate the connection (RST)

 … within the time the server employs between listen
and accept

 this problem

may be treated directly by the kernel or may generate
the EPROTO / ECONNABORTED errors in acceptthe EPROTO / ECONNABORTED errors in accept

 frequent case in overloaded web servers

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-65

Child-server termination
 when the child-server communicating with the client

terminates properly (exit), the socket is closed, i.e.:

 a FIN is generated, accepted by the client kernel but a FIN is generated, accepted by the client kernel but
not transmitted to the application until the next read

 if the client performs a write it receives a RST

 depending on timing, the client will receive error on
the write, or EOF or ECONNRESET on the next read

 if the client has not yet read the data sent by the if the client has not yet read the data sent by the
server before the channel is closed, this data may get
lost (therefore it is better a partial closure on the
server side with shutdown_write + timeout + exit)

SIGPIPE
 a process calling write() on a socket that has

received RST, receives the SIGPIPE signal

 default: terminates the process default: terminates the process

 if the signal is intercepted or ignored, write() returns
the EPIPE error

 attention:

 if there are many sockets open for writing …

 SIGPIPE does not indicate which one has… SIGPIPE does not indicate which one has
generated the error

 therefore, it is better to ignore the signal and handle
the EPIPE returned by the write()

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-66

Server crash
 covers also the case of unreachable server

 client’s writes will work (there is no one responding
with an error!)with an error!)

 client’s reads will timeout (sometimes after long
time: in BSD 9 m!) generating ETIMEDOUT

 reads and writes may receive EHOSTUNREACH or
ENETUNREACH if an intermediate router has
detected the problem and signalled it with ICMP

 solution: set a timeout

 directly on the socket with specific socket options

 using select()

 using alarm() – deprecated

Server crash and reboot
 sequence:

 crash (= unreachable server)

 boot (=server is reachable but has lost knowledge of boot (=server is reachable but has lost knowledge of
existing connections: RST)

 as a consequence read and write will fail with
ECONNRESET

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-67

Server shutdown
 at shutdown of a Unix node, the init process:

 sends SIGTERM to every active process

 after 5 20 seconds sends SIGKILL after 5…20 seconds sends SIGKILL

 SIGTERM can be intercepted and thus a server can
try to close all its open sockets

 SIGKILL cannot be intercepted; it terminates all the
processes closing all their open sockets

Heartbeating
 if you want to know as soon as possible if the peer is

unreachable or broken, you must activate an
“heartbeating” mechanism

 two possible implementations:

 through the option SO_KEEPALIVE

 through an application protocol for heartbeating

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-68

I/O multiplexing

read? network

file

Use of I/O multiplexing
 a client managing inputs form multiple sources

(typically the user on the keyboard and the server on
a socket)

 a client managing multiple sockets (rare, but it’s
typical for web browsers)

 a TCP server managing both the listening socket and
the connection ones (without activating separate
processes; e.g. embedded systems)

 a server managing both UDP and TCP

 a server managing multiple services and/or protocols
(rare, but typical for the inetd process)

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-69

I/O models
 blocking (read on normal sockets)

 nonblocking (read on non-blocking sockets)

 multiplexing (select poll) multiplexing (select, poll)

 signal-driven (SIGIO)

 asynchronous (aio_xxx functions)

 all models encompass two phases:

 waiting for data to be ready

 copying data from kernel space to user space

 the problem is always on reading, almost never on
writing

I/O models comparison
blocking nonblocking multiplexing signal-driven asynch

initiate check
check
h k

check initiate

b

check
check
check
check
check
check

ready
initiate

notification
initiate

b
lo

cke

b
lo

cked

complete complete complete complete notification

b
lo

cked

b
lo

cked

b
lo

cked

ed

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-70

I/O multiplexing model

select()

kernelapplication

process blocked
waiting for

a descriptor
to become readable

select()

recvfrom()

data unavailable

waiting for
a datagram

data available

process blocked
waiting for data

work with data

start copying data

copy data from
kernel to user space

data copied

select()
 blocks the calling process until …

 one of the selected descriptors becomes “active”

 or the timeout expires (if set) or the timeout expires (if set)

 maxfdp1 (= MAX FD Plus 1) sets the number of the
higher file descriptor to be monitored, plus one

 returns the number of active descriptors, 0 if
terminated by timeout, -1 in case of error

#include <sys/select.h>

#include <sys/time.h>

int select (int maxfdp1, fd_set *readset,
fd_set *writeset, fd_set *exceptset,
struct timeval *timeout);

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-71

Timeout
 unlimited waiting: timeout == NULL

 maximum waiting time: timeout != NULL

 no waiting (i e polling): timeout == { 0 0 } no waiting (i.e. polling): timeout == { 0, 0 }

 some systems modify the timeout value, therefore it
is better to re-initialize it at every call

#i l d /ti h#include <sys/time.h>

struct timeval
{

long tv_sec; // seconds
long tv_usec; // microseconds

};

fd_set
 set of flags to select file descriptors (i.e. a “bit

mask”)

 manipulated with the macros FD xxx manipulated with the macros FD_xxx

 use FD_ISSET to discover on which descriptors there
was some activity

 attention!!! they must be re-initialized at every call

#include <sys/select.h>

void FD_ZERO (fd_set *fdset); // resets the mask

void FD_SET (int fd, fd_set *fdset); // set(fd)

void FD_CLR (int fd, fd_set *fdset); // reset(fd)

int FD_ISSET (int fd, fd_set *fdset); // test(fd)

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-72

When a descriptor is “ready”?
 readset:

 there is data to read

 the peer has closed the channel for read (i e EOF) the peer has closed the channel for read (i.e. EOF)

 an error occurred on the descriptor

 there is a new connection for a listening socket

 writeset:

 there is space available for writing

 peer closed the channel for writing (SIGPIPE/EPIPE)

 an error occurred on the descriptor

 exceptset:

 there is OOB data available

I/O multiplexing: example
 modify the client addtcpc.c to maximise throughput

 solution:

 do not alternate between reading the operation from do not alternate between reading the operation from
standard input and reading the response from the
socket but manage both by using select()

 see diagrams in the next slides

 note: perform the test by typing input on the note: perform the test by typing input on the
keyboard, and by redirecting it from a file … you will
note an error!

addtcpc2.c

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-73

Diagram of addtcpc.c

read (STDIN)
EOF

close (sock) end

write (sock)

read (sock)read (sock)

write (STDOUT) error

EOF

Diagram of addtcpc2.c

select (STDIN, sock)

read (STDIN)

write (sock)

read (sock)

write (STDOUT)

error

EOF EOF

close (sock)

end

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-74

Batch input
 when input is fed without interruptions (like in case

of reading from a file with a large buffer), it may
happen to terminate all the input and close the
socket without waiting for all the responses

 solution:

 do not close the socket completely, i.e. by calling
close()

 but instead close only the writing part, by calling
shutdown()

 and wait for EOF (from server) before closing the
reading part

addtcpc3.c

select (STDIN, socket)

Scheme of addtcpc3.c

read (STDIN)

write (sock)

read (sock)

write (STDOUT)

EOF

error

EOF

shutdown (sock, SHUT_WR)
stdin_eof = true

end

stdin_eof?
false true

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-75

shutdown()
 close one of the two channels associated to a socket

 note that close():

 closes both channels (but only if the reference closes both channels (… but only if the reference
count of the descriptor becomes 0)

 the exact behaviour depends on the option LINGER

 possible values for the ‘howto’ parameter:

 SHUT_RD (or 0)

 SHUT_WR (or 1)

 SHUT_RDWR (or 2)

#include <sys/socket.h>

int shutdown (int sockfd, int howto);

Behaviour of shutdown()
 shutdown (sd, SHUT_RD)

 read on the socket is impossible

 the content of the read buffer is discarded the content of the read buffer is discarded

 future data will be discarded directly by the stack

 shutdown (sd, SHUT_WR)

 write on the socket is impossible

 the content of the write buffer is sent to the
destination, followed by FIN for TCP sockets

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-76

Socket options

getsockopt() and setsockopt()
 applicable only to open sockets

 “level” indentifies the level of the network stack:
SOL SOCKET, IPPROTO IP, IPPROTO TCP, …SOL_SOCKET, IPPROTO_IP, IPPROTO_TCP, …

 mnemonic values for “optname”

#include <sys/socket.h>

#include <netinet/tcp.h>

int getsockopt (int sockfd, int level, int optname,
void *optval, socklen_t *optlen);

int setsockopt (int sockfd, int level, int optname,
const void *optval, socklen_t optlen);

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-77

Some options at SOCKET level
level optname get set type
SOL_SOCKET SO_BROADCAST X X int (boolean)

SO_DEBUG X X int (boolean)
X XSO_DONTROUTE X X int (boolean)

SO_ERROR X int
SO_KEEPALIVE X X int (boolean)
SO_LINGER X X struct linger
SO_OOBINLINE X X int (boolean)

SO_RCVBUF X X int
SO SNDBUF X X intSO_SNDBUF X X int

SO_RCVTIMEO X X struct timeval
SO_SNDTIMEO X X struct timeval

SO_REUSEADDR X X int (boolean)
SO_REUSEPORT X X int (boolean)

SO_TYPE X int

Some options at IP and TCP level
level optname get set type
IPPROTO_IP IP_OPTIONS X X

X X iIP_TOS X X int

IP_TTL X X int

IP_RECVDSTADDR X X int

IPPROTO_TCP TCP_MAXSEG X X int

TCP_NODELAY X X int

TCP KEEPALIVE X X intTCP_KEEPALIVE X X int

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-78

Example of reading socket options
 from UNP, section 7.3

 note: in CYGWIN the timeouts are integers

checkopts.c

Broadcast, Keepalive, buffer
 SO_BROADCAST

 applicable only to datagram socket

 enables the use of broadcast addresses enables the use of broadcast addresses

 SO_KEEPALIVE

 exchange a “probe” packet every 2 hours (!)

 configuration at kernel level to change the value

 SO_SNDBUF, SO_RCVBUF

 sizes of the local buffers; set before connect (for
clients) and listen (for servers)

 value >= 4 x MSS

 value >= bandwidth x RTT

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-79

SO_SNDTIMEO, SO_RCVTIMEO
 POSIX specifies timeouts with a timeval struct

 originally it was just an integer

 they apply only to: they apply only to:

 read, readv, recv, recvfrom, recvmsg

 write, writev, send, sendto, sendmsg

 use other techniques for accept, connect, …

#include <sys/time.h>

struct timeval
{

long tv_sec;
long tv_usec;

};

SO_REUSEADDR (SO_REUSEPORT)
 SO_REUSEADDR allows:

 binding to a local port occupied by a process (a
connection and a listening socket)connection and a listening socket)

 having multiple processes on the same port (e.g. IPA,
IPB, INADDR_ANY)

 having multiple sockets of a single process on the
same port but with different local addresses (useful fro
UDP without IP_RECVDSTADDDR)

 having multiple multicast sockets on the same port
(some systems use SO_REUSEPORT)

 option highly recommended for all TCP servers

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-80

SO_LINGER
 changes the behaviour of close()

 OFF: non-blocking close (but try to send pending
data)data)

 ON + l_linger == 0: non-blocking close and
connection abort (=RST, instead of FIN + TIME_WAIT)

 ON + l_linger > 0: blocking close (try to send all
pending data until the timeout; if the timeout expires,
returns EWOULDBLOCK)

#include <sys/socket.h>

struct linger
{

int l_onoff; // 0=off, non-zero=on
int l_linger; // linger timeout (seconds in Posix)

};

IP_TOS, IP_TTL
 read or set the TOS and TTL values of sent packets

 values for TOS:

 IPTOS LOWDELAY IPTOS_LOWDELAY

 IPTOS_THROUGHPUT

 IPTOS_RELIABILITY

 IPTOS_LOWCOST (IPTOS_MINCOST)

 values that should be the default for TTL:

 64 for UDP and TCP (RFC-1700)

 255 for RAW sockets

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-81

Supporting libraries

Network libraries
 libpcap

 packet capture

 http://www tcpdump org http://www.tcpdump.org

 only for Unix; for Windows see winpcap

 libdnet

 raw IP, raw Ethernet, arp, route, fw, if, addresses

 http://libdnet.sourceforge.net

 for Unix and Windows

 libnet

 http://www.packetfactory.net/projects/libnet/

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-82

Event libraries
 libevent

 http://monkey.org/~provos/libevent/

 liboop liboop

 http://liboop.org/

Managing names and addresses

lit it ???www.polito.it = ???

mail.x.net : smtp = ???

192.168.1.1 = ???

5f1b:df00:ce3e:e200:20:800:2078:e3e3 = ???

tcp / 43 = ???

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-83

Mnemonic and numerical formats
 conversion between mnemonic names and numerical

values (nodes, services, networks, protocols,
network addresses)

 attention! conversion depends on local system
configuration

 local files (e.g. /etc/hosts, /etc/services)

 LAN lookup services (e.g. NIS, LDAP)

 global lookup service (DNS) global lookup service (DNS)

 only for DNS you can (with some efforts) point
explicitly to a specific service

gethostbyname()
 returns a data structure with the description of the

node whose name is specified as argument

 in case of error, it returns NULL and sets the variable in case of error, it returns NULL and sets the variable
h_errno to specify the error, whose textual
representation can be retrieved with
hstrerror(h_errno)

#include <netdb h>#include <netdb.h>

struct hostent *gethostbyname (
const char *hostname);

extern int h_errno;

char *hstrerror (int h_errno);

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-84

struct hostent
 note: addresses represented as 1 char = 1 byte

(better: 1 unsigned char)

#include <netdb.h>

struct hostent {

char *h_name; // canonical name

char **h_aliases; // array of alias names

int h_addr_type; // AF_INET or AF_INET6

int h_length; // address length (4 or 16 bytes)

char **h_addr_list; // array of addresses

};

#define h_addr h_addr_list[0] // BSD compatibility

struct hostent

www.polito.it \0

h_name

h_aliases

h_addrtype

h_length

h addr list

alias1 \0

(struct in_addr) IP1

NULL

h_addr_list

(struct in_addr) IP2

NULL

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-85

gethostbyaddr()
 returns a data structure with the description of the

node whose address is specified as argument

 in case of error, it returns NULL and sets the variable in case of error, it returns NULL and sets the variable
h_errno to specify the error, whose textual
representation can be retrieved with
hstrerror(h_errno)

 note: the argument “addr” is actually a pointer to the
struct in_addr or in_addr6

#include <netdb.h>

struct hostent *gethostbyaddr (
const char *addr, size_t len, int family);

uname()
 identifies the node where the process is executing

 strings’ size and content depend on the system and
its configurationits configuration

 in case of error, it returns a negative integer and sets
the errno variable

#include <sys/utsname.h>

struct utsname {
char sysname[...]; // OS name
h d [] // k dchar nodename[...]; // network node name

char release[...]; // OS release
char version[...]; // OS version
char machine[...]; // CPU type

};

int uname (struct utsname *nameptr);

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-86

Examples
 (info_from_n.c) program to provide all information

available on a node given its name

 (info from a.c) program to provide all information (info_from_a.c) program to provide all information
available on a node given its address

 (myself.c) program to provide all information
available on the node where the program is
executing

myself.c

info_from_a.c

info_from_n.c

getservbyname(), getservbyport()
 return information on the service whose name or port

is passed as argument

 return NULL in case of error return NULL in case of error

 attention: the returned port numbers use network
order (OK to program, not to visualise them)

#include <netdb.h>

struct servent *getservbyname (
)const char *servname, const char *protoname);

struct servent *getservbyport (
int port, const char *protoname);

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-87

struct servent
 note: error in UNP (p.251) to declare int s_port

#include <netdb.h>

struct servent {

char *s_name; // official service name

char **s_aliases; // array of aliases

short s_port; // port number (network order)

char *s_proto; // transport protocol

};

service.c

The “daemons”

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-88

What is a daemon?
 an autonomous process

 typically plays the server role

 automatically started at boot time automatically started at boot time

 detached by any terminal

 writes information to a log file

 configured through information passed on the
command line (deprecated!) or contained in a
configuration fileconfiguration file

 executed with the rights of a given user and group

 works within a given directory

syslog() (*)
 mandatory for Unix98; POSIX standardises less

features than what available in most UNIX versions

 allows to append data to the system log allows to append data to the system log

 the actual destination of data depends on the
syslogd configuration (e.g. /etc/syslog.conf)

 communication is opened implicitly or explicitly
(openlog + closelog)

#include <syslog.h>y g

void syslog (
int priority, const char *message , ...);

void openlog (
const char *ident, int options, int facility);

void closelog (void);

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-89

syslog priority = level | facility
LOG_EMERG (maximum priority)
LOG_ALERT
LOG CRITL _
LOG_ERR
LOG_WARNING
LOG_NOTICE (default priority)
LOG_INFO
LOG_DEBUG (minimum priority)

L
E

V
E

L

LOG_AUTH LOG_AUTHPRIV LOG_CRON
LOG_DAEMON LOG_FTP LOG_KERN
LOG_LOCAL0 . . . LOG_LOCAL7
LOG_LPR LOG_MAIL LOG_NEWS
LOG_SYSLOG LOG_USER LOG_UUCPFA

C
IL

IT
Y

syslog options

LOG_CONS log on console if the communication
ith l d f ilwith syslogd fails

LOG_NDELAY immediate socket opening, without
waiting the first call to syslog()

LOG_PERROR log also on stderr

LOG_PID insert in the log also the PID

O
P

T
IO

N
S

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-90

Daemon initialization
 disassociate from the controlling terminal (thus

becoming immune to HUP, INT, WINCH that can be
used for other signalling)

 move to the working directory

 close all inherited files

 optionally, as a precaution against foreign libraries:

 open /dev/null and associate it to stdin, stdout, stderr

 or open a log file and associate it to stdout e stderr or open a log file and associate it to stdout e stderr

 open syslog

 to avoid mistakes during daemon initialization, use
the daemon_init() function (UNP, p.336)

daemon_init()
fork()

parent child1

exit(0) setsid()

signal(SIG_HUP,SIG_IGN)

fork()

exit(0)

parent (= child1)

daemon proc = 1

child2

exit(0)

chdir(WDIR)

daemon_proc 1

umask(0)

openlog()

close all files

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-91

Signals to daemons
 conventions frequently used:

 SIGHUP to make the daemon re-reads the
configuration fileconfiguration file

 SIGINT to make the daemon terminates

inetd
 if a network node offers multiple services, it must

have multiple listening daemons, everyone being a
process and having some associated code

 for simplicity, Unix often uses the super-server
“inetd”

 knows the services specified in /etc/inetd.conf

 listens on all corresponding sockets

 when it receives a connection request it starts the when it receives a connection request, it starts the
corresponding server

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-92

Format of /etc/inetd.conf
 every line contains from 7 to 11 fields:

 service-name -- name of the service in
/etc/services)/etc/services)

 socket-type (stream, dgram)

 protocol (tcp, udp)

 wait-flag (wait, nowait) -- iterative or concurrent
server

 login name (entry in /etc/pass d) user name login-name (entry in /etc/passwd) -- user name

 server-program (pathname, internal)

 arguments (maximum 5, included argv[0])

Example of /etc/inetd.conf

. . .
h i i lecho stream tcp nowait root internal

echo dgram udp wait root internal
ftp stream tcp nowait root /usr/etc/ftpd ftpd
telnet stream tcp nowait root /usr/etc/telnetd telnetd
login stream tcp nowait root /etc/rlogind rlogind
tftp dgram udp wait nobody /usr/etc/tftpd tftpd
talk dgram udp wait root /etc/talkd talkd
spawn stream tcp nowait lioy /usr/local/spawner spawnerspa st ea tcp o a t oy /us / oca /spa e spa e
. . .

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-93

Behaviour of inetd (I)
s = socket()

bi d()
for every service
li t d ibind(s)

select()

listen(s)

listed in
/etc/inetd.conf

fork()

close(conn)

conn = accept(s)

parent (inetd) child (server)

...

Behaviour of inetd (II)
close every descriptor

but the connected socket
child (server)

close(conn)

dup2(conn,STDIN_FILENO)

dup2(conn,STDOUT_FILENO)

dup2(conn,STDERR_FILENO)

exec(server)

getpwnam()
setuid(), setgid()

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-94

Server started by inetd
 just need a “filter” that:

 reads data from stdin (descriptor 0)

 generates results on stdout / stderr (descriptor 1 / 2)

inetd

 generates results on stdout / stderr (descriptor 1 / 2)

 problem with non-ASCI data

socket

server stdoutstdin

stderr

read

write

Other solutions for the super-server
 tcpd is a system to securely activate a server from

inetd

 xinetd is an improved version of inetd that already xinetd is an improved version of inetd that already
includes the features of tcpd

 tcpserver is a full replacement of inetd+tcpd (but it is
not a super-server)

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-95

tcpserver
 by D.J.Bernstein (http://cr.yp.to)

 is a filter, listening on a TCP port

 one copy for each service to protect one copy for each service to protect

 independent copies = efficiency

 small = easier to verify

 flexibility, security and modularity

 meticulous attention to permissions and restrictions

 control on the number of concurrent processes

 access control (IP addresses, DNS names)

 configurable UID and GID

tcpserver: activation
 tcpserver waits listening on a port (port) of an

interface (host) and executes an application
(program) for each received request ...

 ... if the optionally specified controls (-x) are satisfied

tcpserver [-qQvdDoOpPhHrR1] [-climit]
[-bbacklog] [-xrules.cdb] [-ggid]
[-uuid] [-llocalname][-ttimeout]
host port program [arg ...]

tcpserver program

fd #0

fd #1

network
host : port

Distributed programming I (socket - nov'09)

© A.Lioy - Politecnico di Torino (2009) B-96

tcpserver: main options
 -cn (maximum n simultaneous processes)

 -xr.cdb (control access rules in r.cdb)

 ggid (set the group ID) -ggid (set the group ID)

 -uuid (set the user ID)

 -bn (allow a backlog of n TCP SYNs)

tcpserver: access rules
 rules defined according to the following format:

 user@addres:instructions_list

 instructions list ::= deny | allow environment var instructions_list ::= deny | allow , environment var.

 rules compiled with tcprules, to obtain a file .CDB
(hash data structure)

tcprules rules.cdb rules.tmp < rules.txt

(rules.txt)
130.192.:allow
192.168:allow,CLIENT="private"
:deny

