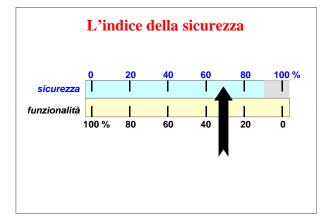
Firewall e IDS/IPS

Antonio Lioy < lioy @ polito.it >

Politecnico di Torino Dip. Automatica e Informatica

Che cos'è un firewall? • firewall = muro tagliafuoco • collegamento controllato tra reti a diverso livello di sicurezza = sicurezza del perimetro (L1 > L2) rete a livello di sicurezza L1 RETE INTERNA RETE ESTERNA


Ingress vs. Egress firewall

- ingress firewall
 - collegamenti incoming
 - tipicamente verso servizi offerti all'esterno
 - talvolta come parte di una comunicazione attivata dall'interno
- egress firewall
 - collegamenti outgoing
 - controllo dell'attività del personale
- distinzione facile per servizi orientati al canale (es. applicazioni TCP), difficile per servizi basati su datagrammi (es. ICMP, applicazioni UDP)

Progettazione di un firewall

Un firewall non si "compra", si progetta (si comprano i suoi componenti)

- si tratta di trovare il compromesso ottimale ...
- ... tra sicurezza e funzionalità
- ... col minimo costo

I TRE PRINCIPI INDEROGABILI DEI FIREWALL

- I. il FW deve essere l'unico punto di contatto della rete interna con quella esterna
- II. solo il traffico "autorizzato" può attraversare il FW
- III. il FW deve essere un sistema altamente sicuro esso stesso

D.Cheswic S.Bellovin

Politiche di autorizzazione

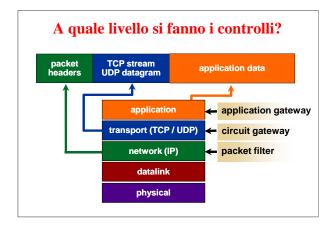
"Tutto ciò che non è espressamente permesso, è vietato"

- maggior sicurezza
- più difficile da gestire

"Tutto ciò che non è espressamente vietato, è permesso"

minor sicurezza (porte aperte)

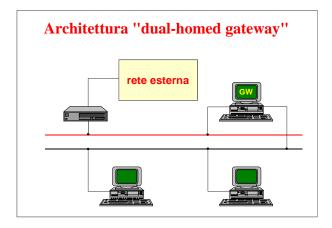
più facile da gestire

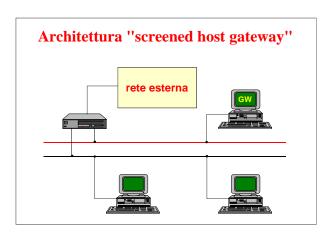

Considerazioni generali


- gli oggetti grossi sono più difficili da verificare
- se un processo non è stato attivato, i suoi bachi non ci riguardano
- "grande NON è bello" = configurazione minima
- un FW non è una macchina general-purpose (minimo del sw, no utenti)
- ognuno è colpevole finché non si dimostra innocente

FW: elementi di base

- screening router (choke) router che filtra il traffico a livello IP
- bastion host sistema sicuro, con auditing
- application gateway (proxy) servizio che svolge il lavoro per conto di un applicativo, con controllo di accesso
- dual-homed gateway sistema con due connessioni di rete e routing disabilitato


_		
_		
_		
_		
_		


Architettura "screening router"

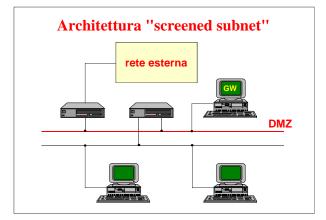
- usa il router per filtrare il traffico sia a livello IP che superiore
- non richiede hardware dedicato
- non necessita di proxy e quindi di modifiche agli applicativi
- facile, economico e ... insicuro!

Architettura "dual-homed gateway"

- facile da realizzare
- richiede poco hardware
- possibile mascherare la rete interna
- scarsamente flessibile
- grosso sovraccarico di lavoro

Architettura "screened host gateway"

router:

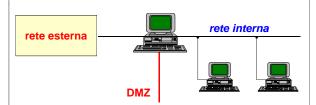

- blocca i pacchetti da INT a EXT a meno che arrivino dal bastion host
- blocca i pacchetti da EXT a INT a meno che siano destinati al bastion host
- eccezione: protocolli abilitati direttamente

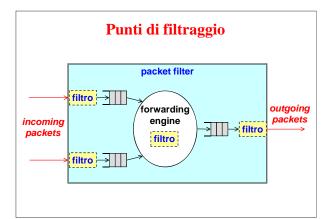
bastion host:

 circuit/application level gateway per abilitare selettivamente dei servizi

Architettura "screened host gateway"

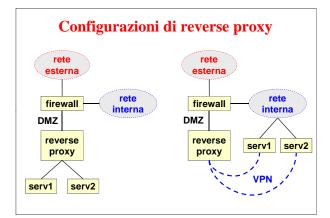
- più caro da realizzare
- più flessibilità
- complicato da gestire: due sistemi invece di uno
- si può selettivamente allentare il controllo su certi servizi / host
- si possono mascherare solo gli host/protocolli che passano dal bastion (a meno che il router abbia funzionalità NAT)




Architettura "screened subnet"

- DMZ (De-Militarized Zone)
- sulla DMZ oltre al gateway ci possono essere più host (tipicamente i server pubblici):
 - Web
 - accesso remoto
 - . . .
- si può configurare il routing in modo che la rete interna sia sconosciuta
- soluzione costosa

Architettura "screened subnet" (versione 2)

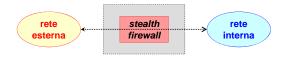

- per motivi di costo e di semplicità di gestione spesso si omettono i router (e le loro funzioni sono incorporate nel gateway)
- anche noto come "firewall a tre gambe"

Reverse proxy

- un server HTTP che fa solo da front-end e poi passa le richieste al vero server
- benefici:
 - obfuscation (non dichiara il vero tipo di server)
 - load balancer
 - acceleratore SSL (con back-end non protetto ...)
 - web accelerator (=cache di contenuti statici)
 - compressione
 - spoon feeding (riceve dal server tutta una pagina creata dinamicamente e la serve poco per volta al client, scaricando così il server applicativo)

Architetture di firewall: quale scegliere? (1)

- In teoria, più alto il livello a cui il firewall opera:
 - più alto sarà il consumo di cicli macchina
 - più alto sarà il livello di protezione che offre
- la realtà:


Firewall customers once had a vote, and voted in favor of transparency, performance and convenience instead of security; nobody should be surprised by the results. (Marcus J. Ranum, the "grandfather of firewalls", firewall wizard mailing list, oct 2000)

Architetture di firewall: quale scegliere? (2)

- la scelta migliore:
 - non un singolo prodotto, ma un'architettura di firewall robusta che supplisca alle carenze e eventuali vulnerabilità dei singoli dispositivi!!!
 - per il singolo elemento richiedere se possibile il supporto ad architetture multiple: meglio poter scegliere che lasciar scegliere ad un vendor!!
 - attenzione alle soluzioni che promettono di risolvere ogni vostro problema: forse si tratta di pubblicità ...

Stealth firewall

- firewall privo di un indirizzo di rete, così da non essere attaccabile direttamente
- intercetta i pacchetti fisicamente, mettendo la propria interfaccia di rete in modo promiscuo

Gestione di un firewall

- manuale con politica di sicurezza della rete:
 - regola n. X
 - funzione richiesta
 - durata temporale della regola
 - richiedente e implementatore
 - regola/e del firewall n. Y
- controllo (semi-)automatico periodico della corrispondenza tra politica e regole implementate dal firewall:
 - dump + diff

Local / personal firewall

- firewall installato direttamente sul nodo da difendere
- tipicamente un packet filter
- rispetto ad un normale firewall in rete può controllare i programmi a cui è permesso:
 - aprire collegamenti in rete verso altri nodi (ossia agire come client)
 - ricevere richieste di collegamento / servizio (ossia agire da server)
- importante per limitare la diffusione di malware o trojan, o semplici errori di installazione
- gestione firewall distinta da gestione sistemistica

Protezione offerta da un firewall

- i firewall sono efficaci al 100% solo relativamente agli attacchi sui canali che sono bloccati
- per gli altri canali occorrono altre difese:
 - VPN
 - firewall "semantici" / IDS
 - sicurezza applicativa

Intrusion Detection System (IDS)

- definizione:
 - sistema per identificare individui che usano un computer o una rete senza autorizzazione
 - esteso anche all'identificazione di utenti autorizzati, ma che violano i loro privilegi
- ipotesi:
 - il "pattern" di comportamento degli utenti non autorizzati si differenzia da quello degli utenti autorizzati

IDS: caratteristiche funzionali

IDS passivi:

- uso di checksum crittografiche (es. tripwire)
- riconoscimento di pattern ("attack signature")

IDS attivi:

- "learning" = analisi statistica del funzionamento del sistema
- "monitoring" = analisi attiva di traffico dati, sequenze, azioni
- "reaction" = confronto con parametri statistici (reazione scatta al superamento di una soglia)

IDS :	: carat	teris	tick	1e t	opol	logi	c	ne
--------------	---------	-------	------	------	------	------	---	----

HIDS (host-based IDS)

- analisi dei log (del S.O. o delle applicazioni)
- attivazione di strumenti di monitoraggio interni al S.O.

NIDS (network-based IDS)

 attivazione di strumenti di monitoraggio del traffico di refe

SIV e LFM

System Integrity Verifier

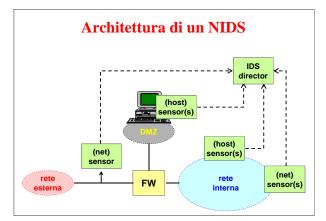
- controlla i file / filesystem di un nodo per rilevarne cambiamenti
- es. rileva modifiche ai registri di Windows o alla configurazione di cron, cambio privilegi di un utente
- es. tripwire

Log File Monitor

- controlla i file di log (S.O. e applicazioni)
- rileva pattern conosciuti derivanti da attacchi o da tentativi di attacco
- es. swatch

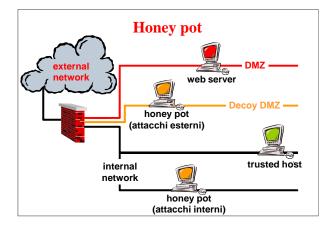
Componenti di un NIDS

sensor


- controlla traffico e log individuando pattern sospetti
- attiva i security event rilevanti
- interagisce con il sistema (ACLs, TCP reset, ...)

director

- coordina i sensor
- gestisce il security database


IDS message system

 consente la comunicazione sicura ed affidabile tra i componenti dell'IDS

IPS

- Intrusion Prevention System
- per velocizzare ed automatizzare la risposta alle intrusioni = IDS + firewall dinamico distribuito
- non un prodotto ma una tecnologia, con grosso impatto su tanti elementi del sistema di protezione
- pericolo di prendere la decisione sbagliata o di bloccare traffico innocuo

